【題目】如圖一個(gè)二次函數(shù)的圖象經(jīng)過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)為(-1,0),點(diǎn)B的坐標(biāo)為(4,0),點(diǎn)Cy軸的正半軸上,AB=OC.

(1)求點(diǎn)C的坐標(biāo);

(2)求這個(gè)二次函數(shù)的解析式,并求出該函數(shù)的最大值

【答案】(1)點(diǎn)C的坐標(biāo)為(0,5);(2)所求二次函數(shù)的解析式為y=-x2x+5,最大值為.

【解析】

(1)根據(jù)A.B兩點(diǎn)的坐標(biāo)及點(diǎn)Cy軸正半軸上,且AB=OC.求出點(diǎn)C的坐標(biāo)為(0,5);

(2)設(shè)二次函數(shù)的解析式為y=ax2+bx+c,把A、B、C三點(diǎn)的坐標(biāo)代入解析式,可求出a、b、c的值.

(1)A(-1,0),B(4,0)

AO=1,OB=4,

AB=AO+OB=1+4=5,

OC=5,即點(diǎn)C的坐標(biāo)為(0,5);

(2)設(shè)圖象經(jīng)過A、C、B三點(diǎn)的二次函數(shù)的解析式為y=ax2+bx+c

由于這個(gè)函數(shù)圖象過點(diǎn)(0,5),可以得到C=5,又由于該圖象過點(diǎn)(-1,0),(4,0),則:

,

解方程組,得

∴所求的函數(shù)解析式為y=-x2+x+5

a=-<0

∴當(dāng)x=-時(shí),y有最大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A組數(shù)據(jù)為2、3、6、6、7、8、8、8,B組數(shù)據(jù)為4、5、8、8、9、10、10、10,則描述A、B兩組數(shù)據(jù)的統(tǒng)計(jì)量中相等的是( 。

A. 眾數(shù) B. 中位數(shù) C. 平均數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一塊RtABC的綠地,量得兩直角邊AC=8cm,BC=6cm.現(xiàn)在要將這塊綠地?cái)U(kuò)充成等腰△ABD,且擴(kuò)充部分(△ADC)是以8cm為直角邊長的直角三角形,求擴(kuò)充等腰△ABD的周長.

1)在圖1中,當(dāng)AB=AD=10cm時(shí),△ABD的周長為

2)在圖2中,當(dāng)BA=BD=10cm時(shí),△ABD的周長為

3)在圖3中,當(dāng)DA=DB時(shí),求△ABD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是用個(gè)相同的小長方形與個(gè)小正方形鑲嵌而成的正方形圖案,已知該圖案的面積為,小正方形的面積為,若用表示小長方形的兩邊長() ,請觀察圖案,指出以下關(guān)系式中,不正確的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+bx+cx軸交于A(﹣3,0),B(1,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)求該拋物線的解析式;

(2)在拋物線上求一點(diǎn)P,使SPAB=SABC,寫出P點(diǎn)的坐標(biāo);

(3)在拋物線的對稱軸上是否存在點(diǎn)Q,使得△QBC的周長最?若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預(yù)測,種植樹木的利潤y1與投資量x成正比例關(guān)系,種植花卉的利潤y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).

投資量x(萬元)

2

種植樹木利潤y1(萬元)

4

種植花卉利潤y2(萬元)

2

(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;

(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?

(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等邊ABCADBCAD=12,若點(diǎn)P在線段AD上運(yùn)動(dòng),當(dāng)AP+BP的值最小時(shí),AP的長為( .

A.4B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于多項(xiàng)式Ax2bxcb、c為常數(shù)),作如下探究:

1)不論x取何值,A都是非負(fù)數(shù),求bc滿足的條件;

2)若A是完全平方式,

①當(dāng)c=9時(shí),b= ;當(dāng)b=3時(shí),c= ;

②若多項(xiàng)式Bx2dxcA有公因式,求d的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,的中點(diǎn),,分別是的三等分點(diǎn),,分別交,兩點(diǎn),則等于(

A. 3:2:1 B. 4:2:1 C. 5:2:1 D. 5:3:2

查看答案和解析>>

同步練習(xí)冊答案