如圖,已知AB是⊙O的直徑,直線l與⊙O相切于點(diǎn)C且數(shù)學(xué)公式,弦CD交AB于E,BF⊥l,垂足為F,BF交⊙O于G.
(1)求證:CE2=FG•FB;
(2)若tan∠CBF=數(shù)學(xué)公式,AE=3,求⊙O的直徑.

(1)證明:連接AC;
∵AB為直徑,
∴∠ACB=90°.
,且AB是直徑;
∴AB⊥CD;
即CE是Rt△ABC的高;
∴∠A=∠ECB,∠ACE=∠EBC;
∵CF是⊙O的切線,
∴∠FCB=∠A,CF2=FG•FB;
∴∠FCB=∠ECB;
∵∠BFC=∠CEB=90°,CB=CB,
∴△BCF≌△BCE;
∴CE=CF,∠FBC=∠CBE;
∴CE2=FG•FB.

(2)解:∵∠CBF=∠CBE,∠CBE=∠ACE,
∴∠ACE=∠CBF;
∴tan∠CBF=tan∠ACE=;
∵AE=3,
CE=6;
在Rt△ABC中,CE是高,
∴CE2=AE•EB,即62=3EB,
∴EB=12;
∴⊙O的直徑為:12+3=15.
分析:(1)由切割線定理知:CF2=FG•FB,欲證本題的結(jié)論,需先證得CE=CF;可通過(guò)證△BCE≌△BCF得出.
(2)欲求⊙O的直徑,已知AE的長(zhǎng),關(guān)鍵是求出BE的長(zhǎng)度;在Rt△ABC中,CE⊥AB,根據(jù)射影定理得到CE2=AE•EB,由此可求出BE的長(zhǎng).
點(diǎn)評(píng):命題立意:此題綜合運(yùn)用了圓周角的性質(zhì)、垂徑定理、切割線定理、三角形全等、解直角三角形等知識(shí).
點(diǎn)評(píng):此題綜合性較強(qiáng),采用層層深入的方法進(jìn)行逐一解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長(zhǎng)線上一點(diǎn),DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說(shuō)明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過(guò)點(diǎn)D作DF⊥AC,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點(diǎn)A,點(diǎn)C是
EB
的中點(diǎn),則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點(diǎn)C,作CD⊥AD,垂足為點(diǎn)D,直線CD與AB的延長(zhǎng)線交于點(diǎn)E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時(shí),求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案