精英家教網(wǎng)畫圖、證明:如圖,∠AOB=90°,點(diǎn)C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡):作∠AOB的平分線OP;作線段CD的垂直平分線EF,分別與CD、OP相交于E、F;連接OE、CF、DF.
(2)在所畫圖中,
①線段OE與CD之間有怎樣的數(shù)量關(guān)系:
 

②求證:△CDF為等腰直角三角形.
分析:(1)根據(jù)題意,作∠AOB的平分線OP;作線段CD的垂直平分線EF;
(2)①由題意,OE是直角三角形斜邊上的中線,根據(jù)直角三角形的性質(zhì)直接得到OE=
1
2
CD;
②△CDF為等腰直角三角形,由EF是垂直平分線容易得到△CDF是等腰三角形,要證明直角三角形比較麻煩,要充分利用△ODE,△OEC是等腰三角形的等角的作用,還有三角形外角的有關(guān)結(jié)論才能證明.
解答:精英家教網(wǎng)解:(1)根據(jù)題意要求:畫∠AOB的平分線OP,作線段CD的垂直平分線EF;

(2)①OE=
1
2
CD.(4分)
②方法一:∵EF是線段CD的垂直平分線,
∴FC=FD,(5)
∵△COD為直角三角形,E為CD的中點(diǎn),
∴OE=CE=
1
2
CD,
∴∠COE=∠ECO.
設(shè)CD與OP相交于點(diǎn)G,
∵∠EOF=45°-∠COE,
∠EFO=90°-∠EGF=90°-(45°+∠ECO)=45°-∠ECO,
∴∠EOF=∠EFO,EF=OE.(6分)
又CE=OE=EF,∠CEF=90°,
∴∠CFE=45°,同理∠DFE=45°;
∴∠CFD=90°,△CDF為等腰直角三角形.(7分)

方法二:過點(diǎn)F作FM⊥OA、FN⊥OB,垂足分別為M、N.(5分)
∵OP是∠AOB的平分線,
∴FM=FN.
又EF是CD的垂直平分線,
∴FC=FD.
∴Rt△CFM≌Rt△DFN(HL),∠CFM=∠DFN.(6分)
在四邊形MFNO中,由∠AOB=∠FMO=∠FNO=90°,得∠MFN=90°,
∴∠CFD=∠CFM+∠MFD=∠DFN+∠MFD=∠MFN=90°,
∴△CDF為等腰直角三角形.(7分)
點(diǎn)評:此題考查等腰三角形的基本性質(zhì)及判定定理,利用三角形的角平分線和垂直平分線及底邊高三線合一是解題的關(guān)鍵,還要利用三角形外角的關(guān)系結(jié)論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

畫圖、證明:如圖,∠AOB=90°,點(diǎn)C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡):作∠AOB的平分線OP;作線段CD的垂直平分線EF,分別與CD、OP相交于E、F;連接CF、DF.
(2)在所畫圖中,求證:△CDF為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

畫圖、證明:如圖,,點(diǎn)C、D分別在OA、OB上。

⑴ 尺規(guī)作圖(不寫作法,保留作圖痕跡):作的平分線OP;作線段CD的垂直平分線EF,分別與CD、OP相交于E、F;連結(jié)OE、CF、DF。

⑵ 在所畫圖中,

① 線段OE與CD之間有怎樣的數(shù)量關(guān)系:_____________。

② 求證:△CDF為等腰直角三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2007•鎮(zhèn)江)畫圖、證明:如圖,∠AOB=90°,點(diǎn)C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡):作∠AOB的平分線OP;作線段CD的垂直平分線EF,分別與CD、OP相交于E、F;連接OE、CF、DF.
(2)在所畫圖中,
①線段OE與CD之間有怎樣的數(shù)量關(guān)系:______.
②求證:△CDF為等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•鎮(zhèn)江)畫圖、證明:如圖,∠AOB=90°,點(diǎn)C、D分別在OA、OB上.
(1)尺規(guī)作圖(不寫作法,保留作圖痕跡):作∠AOB的平分線OP;作線段CD的垂直平分線EF,分別與CD、OP相交于E、F;連接OE、CF、DF.
(2)在所畫圖中,
①線段OE與CD之間有怎樣的數(shù)量關(guān)系:______.
②求證:△CDF為等腰直角三角形.

查看答案和解析>>

同步練習(xí)冊答案