如圖,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一點(diǎn),F(xiàn)、G分別是AB、CM的中點(diǎn),且∠BAE=∠MCE,∠MBE=45°,則給出以下五個(gè)結(jié)論:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述結(jié)論中始終正確的序號(hào)有   
【答案】分析:根據(jù)已知及全等三角形的判定方法進(jìn)行分析,從而得到答案.
解答:解:∵梯形ABCD中,AD∥BC,EA⊥AD,
∴AE⊥BC,即②正確.
∵∠MBE=45°,
∴BE=ME.
在△ABE與△CME中,
∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,
∴△ABE≌△CME,
∴AB=CM,即①正確.
∵∠MCE=∠BAE=90°-∠ABE<90°-∠MBE=45°,
∴∠MCE+∠MBC<90°,
∴∠BMC>90°,即③⑤錯(cuò)誤.
∵∠AEB=∠CEM=90°,F(xiàn)、G分別是AB、CM的中點(diǎn),
∴EF=AB,EG=CM.
又∵AB=CM,
∴EF=EG,即④正確.
故正確的是①②④.
點(diǎn)評(píng):此題主要考查全等三角形的判定及等腰三角形的判定方法的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長(zhǎng)為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案