如圖,在邊長為3的正方形ABCD中,點(diǎn)E是BC邊上的點(diǎn),BE=1,∠AEP=90°,且EP交正方形外角的平分線CP于點(diǎn)P,交邊CD于點(diǎn)F,

(1)的值為   ;
(2)求證:AE=EP;
(3)在AB邊上是否存在點(diǎn)M,使得四邊形DMEP是平行四邊形?若存在,請給予證明;若不存在,請說明理由.
解:(1)∵四邊形ABCD是正方形,∴∠B=∠D。
∵∠AEP=90°,∴∠BAE=∠FEC。
在Rt△ABE中,AB=3,BE=1,∴。

(2)證明:在BA邊上截取BG=BE,連接GE,

∵∠B=90°,BG=BE,∴∠BGE=45°。∴∠AGE=135°。
∵CP平分外角,∴∠DCP=45°!唷螮CP=135°。
∴∠AGE=∠ECP。
∵AB=CB,BG=BE,
∴AB﹣BG=BC﹣BE,即:AG=CE。
又∠GAE=∠CEP,
∵在△AGE和△ECP中,∠AGE=∠ECP,AG=CE,∠GAE=∠CEP,
∴△AGE≌△ECP(ASA)。
∴AE=EP。
(3)存在。證明如下:
如圖,作DM⊥AE于AB交于點(diǎn)M,則有:DM∥EP,

連接ME、DP,
∵在△ADM與△BAE中,
AD=BA,∠ADM=∠BAE,∠DAM=∠ABE,
∴△ADM≌△BAE(AAS)!郙D=AE。
∵由(2)AE=EP,∴MD=EP!郙DEP。
∴四邊形DMEP為平行四邊形。

試題分析:(1)由正方形的性質(zhì)可得:∠B=∠C=90°,由同角的余角相等,可證得:∠BAE=∠CEF,根據(jù)同角的正弦值相等即可解答:
(2)在BA邊上截取BG=BE,連接GE,根據(jù)角角之間的關(guān)系得到∠AGE=∠ECP,由AB=CB,BG=BE,得AG=EC,結(jié)合∠GAE=∠CEP,證明△AKE≌△ECP,于是結(jié)論得出。
(3)作DM⊥AE于AB交于點(diǎn)M,連接ME、DP,易得出DM∥EP,由已知條件證明△ADM≌△BAE,進(jìn)而證明MD=EP,四邊形DMEP是平行四邊形即可證出。 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)O是菱形ABCD對角線的交點(diǎn),DE∥AC,CE∥BD,連接OE.
求證:OE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角形板的兩條直角邊與CD交于點(diǎn)F,與CB延長線交于點(diǎn)E,四邊形AECF的面積是(       ).
A.16B.12C.8D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),DG⊥AE,垂足為G,若DG=1,則AE的邊長為
A.B.C.4D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在矩形ABCD中,E為邊BC上的一點(diǎn),AE⊥DE,AB=12,BE=16,F(xiàn)為線段BE上一點(diǎn),EF=7,連接AF。如圖1,現(xiàn)有一張硬紙片△GMN,∠NGM=900,NG=6,MG=8,斜邊MN與邊BC在同一直線上,點(diǎn)N與點(diǎn)E重合,點(diǎn)G在線段DE上。如圖2,△GMN從圖1的位置出發(fā),以每秒1個單位的速度沿EB向點(diǎn)B勻速移動,同時,點(diǎn)P從A點(diǎn)出發(fā),以每秒1個單位的速度沿AD向點(diǎn)D勻速移動,點(diǎn)Q為直線GN與線段AE的交點(diǎn),連接PQ。當(dāng)點(diǎn)N到達(dá)終點(diǎn)B時,△GMNP和點(diǎn)同時停止運(yùn)動。設(shè)運(yùn)動時間為t秒,解答問題:

(1)在整個運(yùn)動過程中,當(dāng)點(diǎn)G在線段AE上時,求t的值;
(2)在整個運(yùn)動過程中,是否存在點(diǎn)P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,說明理由;
(3)在整個運(yùn)動過程中,設(shè)△GMN與△AEF重疊部分的面積為S,請直接寫出S與t的函數(shù)關(guān)系式以及自變量t的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,四邊形ABCD的對角線AC、BD相交于點(diǎn)O,且BD平分AC,若BD=8,AC=6,∠BOC=120°,則四邊形ABCD的面積為       .(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)E,F(xiàn)分別是銳角∠A兩邊上的點(diǎn),AE=AF,分別以點(diǎn)E,F(xiàn)為圓心,以AE的長為半徑畫弧,兩弧相交于點(diǎn)D,連接DE,DF.

(1)請你判斷所畫四邊形的性狀,并說明理由;
(2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題中,正確的是【   】
A.平行四邊形的對角線相等B.矩形的對角線互相垂直
C.菱形的對角線互相垂直且平分D.梯形的對角線相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,點(diǎn)M是對角線BD上的一點(diǎn),過點(diǎn)M作ME∥CD交BC于點(diǎn)E,作MF∥BC交CD于點(diǎn)F.求證:AM=EF.

查看答案和解析>>

同步練習(xí)冊答案