分析 (1)先判斷△ABC為等腰直角三角形得到∠A=∠B=45°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCF=∠ACE=α,∠E=∠A=45°,CA=CE=CB,于是可根據(jù)“ASA”判斷△GBC≌△HEC;
(2)當(dāng)α=45°時,如圖,根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCF=∠ACE=45°,則可計(jì)算出∠BCE=∠BCA+∠ACE=135°,所以∠B+∠BCE=180°,∠E+∠BCE=180°,所以BD∥CE,BC∥DE,于是可判斷四邊形BCED為平行四邊形,加上CB=CE,則可判斷四邊形BCED為菱形.
解答 (1)證明:∵BC=AC,∠ACB=90°,
∴△ABC為等腰直角三角形,
∴∠A=∠B=45°,
∵△ABC繞著點(diǎn)C順時針旋轉(zhuǎn)α°(0≤α≤90°),得到△EFC,
∴∠BCF=∠ACE=α,∠E=∠A=45°,CA=CE=CB,
在△GBC和△HEC中
$\left\{\begin{array}{l}{∠B=∠E}\\{CB=CE}\\{∠BCG=∠ECH}\end{array}\right.$,
∴△GBC≌△HEC;
(2)解:當(dāng)α=45°時,四邊形BCED為菱形.理由如下:
如圖,∵∠BCF=∠ACE=45°,
∴∠BCE=∠BCA+∠ACE=90°+45°=135°,
而∠E=∠B=45°,
∴∠B+∠BCE=180°,∠E+∠BCE=180°,
∴BD∥CE,BC∥DE,
∴四邊形BCED為平行四邊形,
∵CB=CE,
∴四邊形BCED為菱形.
點(diǎn)評 本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.解決本題的關(guān)鍵是掌握菱形的判定方法.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -1<x<3 | B. | -1<x<4 | C. | x<-1或x>3 | D. | x<-1或x>4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 90°的角叫余角,180°的角叫補(bǔ)角 | |
B. | 如果∠1+∠2+∠3=180°,那么∠1、∠2與∠3互補(bǔ) | |
C. | 如果兩個角相等,那么它們的補(bǔ)角相等 | |
D. | 如果∠α>∠β,那么∠α的補(bǔ)角比∠β的補(bǔ)角大 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com