【題目】如圖1,在△ABC中,AB=AC=8cm,BC=6cm,D為AB中點(diǎn),點(diǎn)P在AC上從C向A運(yùn)動(dòng),運(yùn)動(dòng)速度為2(cm/s);同時(shí),點(diǎn)Q在BC上從B向C運(yùn)動(dòng),設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x(cm/s).且設(shè)P,Q的運(yùn)動(dòng)時(shí)間均為t秒,若其中一點(diǎn)先到達(dá)終點(diǎn),則另一個(gè)點(diǎn)也將停止運(yùn)動(dòng).
(1)如圖2,當(dāng)PD∥BC時(shí),請(qǐng)解決下列問題:
①t= ;
②△ADP的形狀為 (按“邊”分類);
③若此時(shí)恰好有△BDQ≌△CPQ,請(qǐng)求出點(diǎn)Q運(yùn)動(dòng)速度x的值;
(2)當(dāng)PD與BC不平行時(shí),也有△BDQ與△CPQ全等:
①請(qǐng)求出相應(yīng)的t與x的值;
②若設(shè)∠A=α°,請(qǐng)直接寫出相應(yīng)的∠DQP的度數(shù)(用含α的式子表示).
【答案】(1)①2;②等腰三角形;③1.5cm/s;(2)①當(dāng)t=1時(shí),x=2;當(dāng)t=2時(shí),x=3;②.
【解析】
(1)①根據(jù)三角形中位線的性質(zhì)得到當(dāng)P為AC的中點(diǎn)時(shí),PD∥BC,求出AP,即可解答;②△ADP的形狀為等腰三角形,證明AD=AP,即可解答;③根據(jù)全等三角形的對(duì)應(yīng)邊相等,得到BQ=CQ,即可解答;(2)①求出BD,根據(jù)全等得出要使△BPD與△CQP全等,必須BD=CP或BP=CP,得出方程12=16-4x或4x=16-4x,求出方程的解即可;②先利用定義三角形的性質(zhì)求出∠B的性質(zhì),再由△BDQ與△CPQ全等,∠BDQ=∠PQC,由∠B+∠BDQ+∠BQD=180°,∠DQP+∠PQC+∠BQD=180°,得到∠DQB+∠B,即可解答.
(1)①∵PD∥BC,D為AB中點(diǎn),
∴點(diǎn)P為AC的中點(diǎn),
∴AP=CP= AC==4cm,
∴t=4÷2=2.
故答案為:2;
②∵D為AB中點(diǎn),點(diǎn)P為AC的中點(diǎn),AB=AC,
∴AD=AP,
∴△ADP為等腰三角形,
故答案為:等腰三角形;
③如圖2,
∵△BDQ≌△CPQ,
∴BQ=CQ,
∴BQ=BC= =3cm,
∴點(diǎn)Q運(yùn)動(dòng)速度x的值為:3÷2=1.5(cm/s);
(2)如圖3,
設(shè)經(jīng)過t秒后,使△BPD與△CQP全等,
∵AB=AC=12,點(diǎn)D為AB的中點(diǎn),
∴BD=6,
∵∠ABC=∠ACB,
∴要使△BPD與△CQP全等,必須BD=CP或BP=CP,
即6=8﹣2t或2t=8﹣2t,
t1=1,t2=2,
t=1時(shí),BP=CQ=2,2÷1=2;
t=2時(shí),BD=CQ=6,6÷2=3;
∴當(dāng)t=1時(shí),x=2;當(dāng)t=2時(shí),x=3.
②∵AB=AC,∠A=α°,
∴∠B=∠C=,
∵△BDQ與△CPQ全等,
∴∠BDQ=∠PQC,
∵∠B+∠BDQ+∠BQD=180°,
∠DQP+∠PQC+∠BQD=180°,
∴∠DQB=∠B=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了美化環(huán)境,學(xué)校準(zhǔn)備在如圖所示的矩形ABCD空地上進(jìn)行綠化,規(guī)劃在中間的一塊四邊形MNQP上種花,其余的四塊三角形上鋪設(shè)草坪,要求AM=AN=CP=CQ,已知BC=24米,AB=40米,設(shè)AN=x米,種花的面積為y1平方米,草坪面積y2平方米.
(1)分別求y1和y2與x之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);
(2)當(dāng)AN的長(zhǎng)為多少米時(shí),種花的面積為440平方米?
(3)若種花每平方米需200元,鋪設(shè)草坪每平方米需100元,現(xiàn)設(shè)計(jì)要求種花的面積不大于440平方米,設(shè)學(xué)校所需費(fèi)用W(元),求W與x之間的函數(shù)關(guān)系式,并求出學(xué)校所需費(fèi)用的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,直線與軸交于點(diǎn),直線與軸及直線分別交于點(diǎn).點(diǎn)關(guān)于軸對(duì)稱,連接.
(1)求點(diǎn)的坐標(biāo)及直線的表達(dá)式;
(2)設(shè)面積的和,求的值;
(3)在求(2)中時(shí),嘉琪有個(gè)想法:“將沿軸翻折到的位置,與四邊形拼接后可看成,這樣求便轉(zhuǎn)化為直接求的面積不更快捷嗎?”但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn),請(qǐng)通過計(jì)算解釋他的想法錯(cuò)在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù):①y=﹣x;②y=2x;③y=﹣ ;④y=x2(x<0),y隨x的增大而減小的函數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三角形兩邊的長(zhǎng)分別是8和6,第3邊的長(zhǎng)是一元二次方程x2﹣16x+60=0的一個(gè)實(shí)數(shù)根,則該三角形的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA與⊙O相切于點(diǎn)A,弦AB⊥OP,垂足為C,OP與⊙O相交于D點(diǎn),已知OP=4,∠OPA=30°.求OC和AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC=12,面積為24,△ABE是等邊三角形,若點(diǎn)P在對(duì)角線AC上移動(dòng),則PD+PE的最小值為( )
A. 4 B. 4 C. D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時(shí),它是菱形 B. 當(dāng)AC⊥BD時(shí),它是菱形
C. 當(dāng)∠ABC=90°時(shí),它是矩形 D. 當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com