已知⊙O1與⊙O2的半徑分別是2和4,O1O2=5,則⊙O1與⊙O2的位置關(guān)系是( 。
| A. | 內(nèi)含 | B. | 內(nèi)切 | C. | 相交 | D. | 外切 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,直線a∥b,直線l與a相交于點(diǎn)P,與直線b相交于點(diǎn)Q,PM⊥l于點(diǎn)P,若∠1=50°,則∠2= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列運(yùn)算正確的是( 。
| A. | a3+a3=a6 | B. | a6÷a2=a4 | C. | a3•a5=a15 | D. | (a3)4=a7 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖①,雙曲線y=(k≠0)和拋物線y=ax2+bx(a≠0)交于A、B、C三點(diǎn),其中B(3,1),C(﹣1,﹣3),直線CO交雙曲線于另一點(diǎn)D,拋物線與x軸交于另一點(diǎn)E.
(1)求雙曲線和拋物線的解析式;
(2)拋物線在第一象限部分是否存在點(diǎn)P,使得∠POE+∠BCD=90°?若存在,請(qǐng)求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖②過(guò)B作直線l⊥OB,過(guò)點(diǎn)D作DF⊥l于點(diǎn)F,BD與OF交于點(diǎn)N,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某茶廠用甲、乙兩臺(tái)分裝機(jī)分裝某種茶葉(每袋茶葉的標(biāo)準(zhǔn)質(zhì)量為200g).為了監(jiān)控分裝質(zhì)量,該廠從它們各自分裝的茶葉中隨機(jī)抽取了50袋,測(cè)得它們的實(shí)際質(zhì)量分析如下:
| 平均數(shù)(g) | 方差 |
甲分裝機(jī) | 200 | 16.23 |
乙分裝機(jī) | 200 | 5.84 |
則這兩臺(tái)分裝機(jī)中,分裝的茶葉質(zhì)量更穩(wěn)定的是 (填“甲”或“乙”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在同一平面內(nèi),△ABC和△ABD如圖①放置,其中AB=BD.
小明做了如下操作:
將△ABC繞著邊AC的中點(diǎn)旋轉(zhuǎn)180°得到△CEA,將△ABD繞著邊AD的中點(diǎn)旋轉(zhuǎn)180°得到△DFA,如圖②,請(qǐng)完成下列問(wèn)題:
(1)試猜想四邊形ABDF是什么特殊四邊形,并說(shuō)明理由;
(2)連接EF,CD,如圖③,求證:四邊形CDEF是平行四邊形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com