【題目】如圖,一次函數(shù)y1kx+b與反比例函數(shù)y2的圖象交于A23),B6n)兩點(diǎn),與x軸、y軸分別交于C,D兩點(diǎn).

1)求一次函數(shù)與反比例函數(shù)的解析式.

2)求當(dāng)x為何值時(shí),y10

【答案】1y1=﹣x+4,y2;(2)當(dāng)x8時(shí),y10

【解析】

1)先利用A點(diǎn)坐標(biāo)確定反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定B點(diǎn)坐標(biāo),然后利用待定系數(shù)法求一次函數(shù)解析式;
2)令y10,然后解不等式kx+b0即可.

解:(1)把A2,3)代入y2m2×36,

∴反比例函數(shù)解析式為y2,

B6,n)代入y2得,6n6,解得n1,

B6,1),

A2,3),B6,1)代入y1kx+b

,解得,

∴一次函數(shù)解析式為y1=﹣x+4;

2)當(dāng)y10時(shí),即﹣x+40,解得x8

∴當(dāng)x8時(shí),y10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,上一動(dòng)點(diǎn),點(diǎn)從點(diǎn)以1個(gè)單位/秒的速度向點(diǎn)運(yùn)動(dòng),遠(yuǎn)動(dòng)到點(diǎn)即停止,經(jīng)過(guò)點(diǎn)作,交于點(diǎn),以為一邊在一側(cè)作正方形,在點(diǎn)運(yùn)動(dòng)過(guò)程中,設(shè)正方形的重疊面積為,運(yùn)動(dòng)時(shí)間為秒,如圖2的函數(shù)圖象.

1)求的長(zhǎng);

2)求的值;

3)求的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形的對(duì)角線(xiàn)交于點(diǎn)是直線(xiàn)上任意一點(diǎn)(異于點(diǎn)),過(guò)點(diǎn)作平行于 的直線(xiàn)交直線(xiàn)于點(diǎn),交直線(xiàn)于點(diǎn)

1)當(dāng)點(diǎn)在線(xiàn)段上時(shí),如圖 ①,易證: (不用證明)

2)當(dāng)點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上時(shí),如圖 ;當(dāng)點(diǎn)在線(xiàn)段的延長(zhǎng)線(xiàn)上時(shí),如圖 ③,線(xiàn)段之間又有怎樣的數(shù)量關(guān)系? 請(qǐng)寫(xiě)出你的猜想,并選擇其中一種情況加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,的直徑,點(diǎn)上一點(diǎn),點(diǎn)是半徑上一動(dòng)點(diǎn)(不與,重合),過(guò)點(diǎn)作射線(xiàn),分別交弦,兩點(diǎn),在射線(xiàn)上取點(diǎn),使

1)求證:的切線(xiàn);

2)當(dāng)點(diǎn)的中點(diǎn)時(shí),

①若,判斷以,,為頂點(diǎn)的四邊形是什么特殊四邊形,并說(shuō)明理由;

②若,且,求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一列動(dòng)車(chē)從甲地開(kāi)往乙地, 一列普通列車(chē)從乙地開(kāi)往甲地,兩車(chē)均勻速行駛并同時(shí)出發(fā),設(shè)普通列車(chē)行駛的時(shí)間為 (小時(shí)),兩車(chē)之間的距離為 (千米),如圖中的折線(xiàn)表示之間的函數(shù)關(guān)系,下列說(shuō)法:①動(dòng)車(chē)的速度是千米/小時(shí);②點(diǎn)B的實(shí)際意義是兩車(chē)出發(fā)后小時(shí)相遇;③甲、乙兩地相距千米;④普通列車(chē)從乙地到達(dá)甲地時(shí)間是小時(shí),其中不正確的有( )

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC4,P是△ABC的高CD上一個(gè)動(dòng)點(diǎn),以B點(diǎn)為旋轉(zhuǎn)中心把線(xiàn)段BP逆時(shí)針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。

A.2-2B.42C.2D.-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB為直徑,作ODABAC于點(diǎn)D,延長(zhǎng)BC,OD交于點(diǎn)F,過(guò)點(diǎn)C作⊙O的切線(xiàn)CE,交OF于點(diǎn)E

1)求證:ECED

2)如果OA4,EF3,求弦AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,點(diǎn)PBC邊上一點(diǎn),連接AP交對(duì)角線(xiàn)BD于點(diǎn)E,.作線(xiàn)段AP的中垂線(xiàn)MN分別交線(xiàn)段DC,DB,AP,AB于點(diǎn)M,G,F,N.

1)求證:

2)若,求.

3)如圖2,在(2)的條件下,連接CF,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的對(duì)角線(xiàn)AC和BD交于點(diǎn)O,分別過(guò)點(diǎn)C、D作CE∥BD,DE∥AC,CE和DE交于點(diǎn)E.

(1)求證:四邊形ODEC是矩形;

(2)當(dāng)∠ADB=60°,AD=2時(shí),求sin∠AED的值,求∠EAD的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案