如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說(shuō)明理由。
解:(1)∵拋物線(a≠0)經(jīng)過(guò)點(diǎn)A(3,0),點(diǎn)C(0,4),
∴,解得。
∴拋物線的解析式為。
(2)設(shè)直線AC的解析式為y=kx+b,
∵A(3,0),點(diǎn)C(0,4),
∴,解得。
∴直線AC的解析式為。
∵點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,
∴M點(diǎn)的坐標(biāo)為(m,)。
研三理-孟奕含(713000529);∵點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線上,
∴點(diǎn)P的坐標(biāo)為(m,)。
∴PM=PE-ME=()-()=。
∴PM=(0<m<3)。
(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似。理由如下:
由題意,可得AE=3﹣m,EM=,CF=m,PF==,
若以P、C、F為頂點(diǎn)的三角形和△AEM相似,分兩種情況:
①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),
∵m≠0且m≠3,∴m=。
∵△PFC∽△AEM,∴∠PCF=∠AME。
∵∠AME=∠CMF,∴∠PCF=∠CMF。
在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°。
∴△PCM為直角三角形。
②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),
∵m≠0且m≠3,∴m=1。
∵△CFP∽△AEM,∴∠CPF=∠AME。
∵∠AME=∠CMF,∴∠CPF=∠CMF!郈P=CM。
∴△PCM為等腰三角形。
綜上所述,存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形。
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,拋物線y1=-x2+3與x軸交于A、B兩點(diǎn),與直線y2=-x+b相交于B、C兩點(diǎn).
(1)求直線BC的解析式和點(diǎn)C的坐標(biāo);
(2)若對(duì)于相同的x,兩個(gè)函數(shù)的函數(shù)值滿足y1≥y2,則自變量x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點(diǎn)P由B出發(fā)沿BA方向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q由A出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動(dòng),它們的速度均為2cm/s.連接PQ,設(shè)運(yùn)動(dòng)的時(shí)間為t(單位:s)(0≤t≤4).解答下列問(wèn)題:
(1)當(dāng)t為何值時(shí),PQ∥BC.
(2)設(shè)△AQP面積為S(單位:cm2),求S與t的函數(shù)關(guān)系式
(3)是否存在某時(shí)刻t,使四邊形BPQC的面積為△ABC面積的三分之二?若存在,求出此時(shí)t的值;若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,把△AQP沿AP翻折,得到四邊形AQPQ′.那么是否存在某時(shí)刻t,使四邊形AQPQ′為菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長(zhǎng)分別為m、4m(m>0),D為邊AB的中點(diǎn),一拋物線l經(jīng)過(guò)點(diǎn)A、D及點(diǎn)M(﹣1,﹣1﹣m).
(1)求拋物線l的解析式(用含m的式子表示);
(2)把△OAD沿直線OD折疊后點(diǎn)A落在點(diǎn)A′處,連接OA′并延長(zhǎng)與線段BC的延長(zhǎng)線交于點(diǎn)E,若拋物線l與線段CE相交,求實(shí)數(shù)m的取值范圍;
(3)在滿足(2)的條件下,求出拋物線l頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線 a≠0)的對(duì)稱軸是直線l,頂點(diǎn)為點(diǎn)M.若自變量x和函數(shù)值y1的部分對(duì)應(yīng)值如下表所示:
x | … | ―1 | 0 | 3 | … |
… | 0 | 0 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線與x軸交于點(diǎn)A(1,0),B(3,0),且過(guò)點(diǎn)C(0,﹣3).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)請(qǐng)你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在直線y=﹣x上,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知拋物線與x軸交于點(diǎn)A,B,AB=2,與y軸交于點(diǎn)C,對(duì)稱軸為直線x=2.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)P為對(duì)稱軸上一動(dòng)點(diǎn),求△APC周長(zhǎng)的最小值;
(3)設(shè)D為拋物線上一點(diǎn),E為對(duì)稱軸上一點(diǎn),若以點(diǎn)A,B,D,E為頂點(diǎn)的四邊形是菱形,則點(diǎn)D的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,頂點(diǎn)為M的拋物線經(jīng)過(guò)點(diǎn)A和x軸正半軸上的點(diǎn)B,AO=OB=2,∠AOB=1200.
(1)求這條拋物線的表達(dá)式;
(2)連接OM,求∠AOM的大小;
(3)如果點(diǎn)C在x軸上,且△ABC與△AOM相似,求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開(kāi)始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于300元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com