【題目】如圖1是一個新款水杯,水杯不盛水時按如圖2所示的位置放置,這樣可以快速晾干杯底,干凈透氣;將圖2的主體部分的抽象成圖3,此時杯口與水平直線的夾角35°,四邊形ABCD可以看作矩形,測得AB=10cm,BC=8cm,過點A作AF⊥CE,交CE于點F.
(1)求∠BAF的度數(shù);(sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002)
(2)求點A到水平直線CE的距離AF的長(精確到0.1cm)

【答案】
(1)解:作BM⊥AF于M,BN⊥CF于N.

∵AF⊥EN,

∴∠MFN=∠BMF=∠BNF=90°,

∴四邊形BMFN是矩形.

∴BM∥FN,

∴∠MBC=∠BCN=35°,

∵四邊形ABCD是矩形,

∴∠ABC=90°,

∴∠ABM=90°﹣∠MBC=55°,

∴∠FAB=90°﹣∠ABM=35°,

故答案為35°


(2)解:在Rt△CBN中,∵BC=8,

∴FM=NB=BCtan35°=0.5736×8≈4.59,

在Rt△ABM中,AM=ABcos35°=10×0.8102≈8.20,

∴AF=AM+FM=8.20+4.59≈12.8(cm)


【解析】(1)作BM⊥AF于M,BN⊥CF于N.由BM∥FN,推出∠MBC=∠BCN=35°,由題意∠ABM=90°﹣∠MBC=55°,推出∠FAB=90°﹣∠ABM=35°.(2)分別在Rt△CBN,Rt△ABM中求出AM、BN即可解決問題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某文化用品商店用2000元購進一批學生書包,面市后發(fā)現(xiàn)供不應求,商店又購進第二批同樣的書包,所購數(shù)量是第一批購進數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元。

1)求第一批購進書包的單價是多少元?

2)若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一個四邊形紙片ABCD,∠B=∠D=90°,把紙片按如圖所示折疊,使點B落在AD邊上的B'點,AE是折痕。

(1)試判斷B'E與DC的位置關(guān)系并說明理由。

(2)如果∠C=130°,求∠AEB的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,直線與直線.

1】(1)求兩直線與軸交點A,B的坐標;

2】(2)求兩直線交點C的坐標;

3】(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,E,F(xiàn)分別是邊BC,CD邊上的動點,且AE=AF,設(shè)△AEF的面積為y,EC的長為x.

(1)求y與x之間的函數(shù)表達式,并寫出自變量x的取值范圍.
(2)當x取何值時,△AEF的面積最大,最大面積是多少?
(3)在直角坐標系中畫出y關(guān)于x的函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

(1)如圖(1),等邊△ABC內(nèi)有一點P到頂點A,B,C的距離分別為3,4,5,則∠APB=
分析:由于PA,PB不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP′≌ , 這樣,就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到一個三角形中從而求出∠APB的度數(shù).
(2)請你利用第(1)題的解答思想方法,解答下面問題:已知如圖(2),△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:BE2+CF2=EF2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:點C∠AOB的一邊OA上,過點C的直線DE∥O B.做∠ACD的平分線CF,過點CCF的垂線CG,如圖所示.

(Ⅰ)若∠AOB=40°,求∠ACD∠ECF的度數(shù);

(Ⅱ)求證:CG平分∠OCD;

(Ⅲ)延長FCOB于點H,用直尺和三角板過點OOR⊥FH,垂足為R,過點O

FH的平行線交ED于點Q.先補全圖形,再證明∠COR=∠GCO,∠CQO=∠CHO.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形的對角線、相交于點,過點,連接,連接于點.

(1)求證:;

(2)若菱形的邊長為2, .求的長.

【答案】(1)證明見解析(2)

【解析】試題分析:(1)先求出四邊形OCED是平行四邊形,再根據(jù)菱形的對角線互相垂直求出∠COD=90°,證明OCED是矩形,可得OE=CD即可;

(2)根據(jù)菱形的性質(zhì)得出AC=AB,再根據(jù)勾股定理得出AE的長度即可.

(1)證明:在菱形ABCD中,OC=AC

DE=OC

DEAC,

∴四邊形OCED是平行四邊形.

ACBD

∴平行四邊形OCED是矩形.

OE=CD

(2)在菱形ABCD中,∠ABC=60°

AC=AB=2.

∴在矩形OCED中,

CE=OD=

RtACE中,

AE=

點睛:本題考查了菱形的性質(zhì),矩形的判定與性質(zhì),勾股定理的應用,是基礎(chǔ)題,熟記矩形的判定方法與菱形的性質(zhì)是解題的關(guān)鍵.

型】解答
結(jié)束】
25

【題目】如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點,點A的坐標為(2,6),點B的坐標為(n,1).

(1)求反比例函數(shù)與一次函數(shù)的表達式;

(2)結(jié)合圖像寫出不等式的解集;

(3)點E為y軸上一個動點,若SAEB=10,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】投擲一枚質(zhì)地均勻的正方體骰子.

(1)下列說法中正確的有 (填序號)

①向上一面點數(shù)為1點和3點的可能性一樣大;

②投擲6次,向上一面點數(shù)為1點的一定會出現(xiàn)1次;

③連續(xù)投擲2次,向上一面的點數(shù)之和不可能等于13.

(2)如果小明連續(xù)投擲了10次,其中有3次出現(xiàn)向上一面點數(shù)為6點,這時小明說:投擲正方體骰子,向上一面點數(shù)為6點的概率是你同意他的說法嗎?說說你的理由.

(3)為了估計投擲正方體骰子出現(xiàn)6點朝上的概率,小亮采用轉(zhuǎn)盤來代替骰子做實驗.下圖是一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,請你將轉(zhuǎn)盤分為2個扇形區(qū)域,分別涂上紅、白兩種顏色,使得轉(zhuǎn)動轉(zhuǎn)盤,當轉(zhuǎn)盤停止轉(zhuǎn)動后,指針落在紅色區(qū)域的概率與投擲正方體骰子出現(xiàn)6點朝上的概率相同.(友情提醒:在轉(zhuǎn)盤上用文字注明顏色和扇形圓心角的度數(shù).)

查看答案和解析>>

同步練習冊答案