如圖:△ABC中,AD是高,CE是中線,G是CE的中點(diǎn),DG⊥CE,G為垂足.
請(qǐng)說(shuō)明下列結(jié)論成立的理由:
(1)DC=BE;
(2)∠B=2∠BCE.

解:(1)如圖:連DE,
∵G是CE的中點(diǎn),DG⊥CE,
∴DG是CE的垂直平分線,
∴DE=DC,
∵AD是高,CE是中線,
∴DE是Rt△ADB的斜邊AB上的中線,
∴DE=BE=AB,
∴DC=BE;
(2)∵DE=DC,
∴∠DEC=∠BCE,
∴∠EDB=∠DEC+∠BCE=2∠BCE,
∵DE=BE,
∴∠B=∠EDB,
∴∠B=2∠BCE.
分析:(1)連DE,由G是CE的中點(diǎn),DG⊥CE得到DG是CE的垂直平分線,根據(jù)線段垂直平分線的性質(zhì)得到DE=DC,由DE是Rt△ADB的斜邊AB上的中線,根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到DE=BE=AB,即可得到DC=BE;
(2)由DE=DC得到∠DEC=∠BCE,由DE=BE得到∠B=∠EDB,根據(jù)三角形外角性質(zhì)得到∠EDB=∠DEC+∠BCE=2∠BCE,則∠B=2∠BCE.
點(diǎn)評(píng):本題考查了線段垂直平分線的性質(zhì):線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等.也考查了直角三角形斜邊上的中線性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案