(2012•鐵嶺)已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).
分析:(1)由等腰三角形的性質(zhì)可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又∵∠AEB=∠C=90°,利用“AA”可證△ABE∽△DBC;
(2)由等腰三角形的性質(zhì)可知,BD=2BE,根據(jù)△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE.
解答:(1)證明:∵AB=AD=25,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;

(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
AB
BD
=
BE
BC

∵AB=AD=25,BC=32,
25
2BE
=
BE
32
,
∴BE=20,
∴AE=
AB2-BE2
=
252-202
=15
點(diǎn)評(píng):本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是要懂得找相似三角形,利用相似三角形的性質(zhì)及勾股定理解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)已知點(diǎn)P(-1,2)在反比例函數(shù)y=
kx
(k≠0)的圖象上,請(qǐng)任意寫(xiě)出此函數(shù)圖象上一個(gè)點(diǎn)(不同于P點(diǎn))的坐標(biāo)是
(1,-2)答案不唯一
(1,-2)答案不唯一

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)已知圓錐的高是12,底面圓的半徑為5,則這個(gè)圓錐的側(cè)面展開(kāi)圖的周長(zhǎng)為
26+10π
26+10π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.直線y=-2x-1經(jīng)過(guò)拋物線上一點(diǎn)B(-2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱(chēng)軸交于點(diǎn)F.
(1)求m的值及該拋物線對(duì)應(yīng)的解析式;
(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱(chēng)軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請(qǐng)直接寫(xiě)出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)已知△ABC是等邊三角形.
(1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角θ(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點(diǎn)O.       
①如圖a,當(dāng)θ=20°時(shí),△ABD與△ACE是否全等?
(填“是”或“否”),∠BOE=
120
120
度;
②當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時(shí),求∠BOE的度數(shù);
(2)如圖c,在AB和AC上分別截取點(diǎn)B′和C′,使AB=
3
AB′,AC=
3
AC′,連接B′C′,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點(diǎn)O,請(qǐng)利用圖c探索∠BOE的度數(shù),直接寫(xiě)出結(jié)果,不必說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案