【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)求證:BD=CD;
(2)當(dāng)△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由;
(3)在(2)的條件下,如果矩形AFBD是正方形,確定△ABC的形狀并說明理由.
【答案】(1)見解析;(2)當(dāng)△ABC滿足:AB=AC時,四邊形AFBD是矩形,見解析;(3)當(dāng)矩形AFBD是正方形,△ABC是等腰直角三角形,見解析
【解析】
(1)根據(jù)兩直線平行,內(nèi)錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,根據(jù)全等三角形對應(yīng)邊相等可得AF=CD,再利用等量代換即可得證;
(2)先利用一組對邊平行且相等的四邊形是平行四邊形證明四邊形AFBD是平行四邊形,再根據(jù)一個角是直角的平行四邊形是矩形,可知∠ADB=90°,由等腰三角形三線合一的性質(zhì)可知必須是AB=AC.
(3)根據(jù)正方形的性質(zhì)和等腰直角三角形的判定定理即可得到結(jié)論.
(1)證明:∵AF∥BC,
∴∠AFE=∠DCE,
∵E是AD的中點,
∴AE=DE,
在△AEF和△DEC中,
,
∴△AEF≌△DEC(AAS),
∴AF=CD,
∴AF=BD,
∴DB=CD;
(2)當(dāng)△ABC滿足:AB=AC時,四邊形AFBD是矩形.
理由如下:∵AF∥BD,AF=BD,
∴四邊形AFBD是平行四邊形,
∵AB=AC,BD=CD(三線合一),
∴∠ADB=90°,
∴AFBD是矩形.
(3)當(dāng)矩形AFBD是正方形,△ABC是等腰直角三角形,且∠BAC=90°;
∵矩形AFBD是正方形,
∴AD=BD,
∵∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴AD=BD=CD=BC,
∴∠BAC=90°,
即△ABC是等腰直角三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列事件中,是隨機事件的是( )
A.任意選擇某一電視頻道,它正在播放新聞聯(lián)播
B.三角形任意兩邊之和大于第三邊
C. 是實數(shù),
D.在一個裝著白球和黑球的袋中摸球,摸出紅球
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 是等腰直角三角形,分別以直角邊 AC,BC 為直徑畫弧,若 AB=2 ,則圖中陰影部分的面積是( )
A. ﹣
B. ﹣
C. ﹣
D. +
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一個長為4a,寬為2b的長方形,沿圖中虛線均勻分成4個長方形,然后按圖2形狀拼成一個正方形.
(1)圖2的空白部分的邊長是多少?(用含a,b的式子表示).
(2)觀察圖2,用等式表示出和的數(shù)量關(guān)系.
(3)若2a+b=6,且ab=2,求圖2的空白正方形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.
(1)分別寫出下列各點的坐標(biāo): A′ ;B′ ;C′ ;
(2)若點P(a,b)是△ABC內(nèi)部一點,則平移后△A′B′C′內(nèi)的對應(yīng)點P′的坐標(biāo)為 ;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器超市銷售每臺進(jìn)價分別為2000元、1700元的、兩種型號的空調(diào),如表是近兩周的銷售情況:
銷售時段 | 銷售數(shù)量 | 銷售款 | |
種型號 | 種型號 | ||
第一周 | 4臺 | 5臺 | 20500元 |
第二周 | 5臺 | 10臺 | 33500元 |
(1)求、兩種型號的空調(diào)的銷售單價;
(2)求近兩周的銷售利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀以下內(nèi)容:
已知實數(shù)x,y滿足x+y=2,且求k的值.
三位同學(xué)分別提出了以下三種不同的解題思路:
甲同學(xué):先解關(guān)于x,y的方程組,再求k的值.
乙同學(xué):先將方程組中的兩個方程相加,再求k的值.
丙同學(xué):先解方程組,再求k的值.
(2)你最欣賞(1)中的哪種思路?先根據(jù)你所選的思路解答此題,再對你選擇的思路進(jìn)行簡要評價.
(評價參考建議:基于觀察到題目的什么特征設(shè)計的相應(yīng)思路,如何操作才能實現(xiàn)這些思路、運算的簡潔性,以及你依此可以總結(jié)什么解題策略等等)
請先在以下相應(yīng)方框內(nèi)打勾,再解答相應(yīng)題目.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高校學(xué)生會向全校2900名學(xué)生發(fā)起了“愛心一日捐”捐款活動,為了解捐款情況,學(xué)生會隨機調(diào)查了部分學(xué)生的捐款金額,并用得到的數(shù)據(jù)繪制了如下統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 , 圖①中m的值是;
(Ⅱ)求本次你調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計該校本次活動捐款金額為10元的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝公司招工廣告承諾:熟練工人每月工資至少3000元.每天工作8小時,一個月工作25天.月工資底薪800元,另加計件工資.加工1件A型服裝計酬16元,加工1件B型服裝計酬12元.在工作中發(fā)現(xiàn)一名熟練工加工1件A型服裝和2件B型服裝需4小時,加工3件A型服裝和1件B型服裝需7小時.(工人月工資=底薪+計件工資)
(1)一名熟練工加工1件A型服裝和1件B型服裝各需要多少小時?
(2)一段時間后,公司規(guī)定:“每名工人每月必須加工A,B兩種型號的服裝,且加工A型服裝數(shù)量不少于B型服裝的一半”.設(shè)一名熟練工人每月加工A型服裝a件,工資總額為W元.請你運用所學(xué)知識判斷該公司在執(zhí)行規(guī)定后是否違背了廣告承諾?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com