如圖,正方形AOCB在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),點(diǎn)B在反比例函數(shù))圖象上,△BOC的面積為

(1)求反比例函數(shù)的關(guān)系式;
(2)若動(dòng)點(diǎn)E從A開(kāi)始沿AB向B以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)F 從B開(kāi)始沿BC向C以每秒個(gè)單位的速度運(yùn)動(dòng),當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)隨之停止運(yùn)動(dòng).若運(yùn)動(dòng)時(shí)間用t表示,△BEF的面積用表示,求出S關(guān)于t的函數(shù)關(guān)系式,并求出當(dāng)運(yùn)動(dòng)時(shí)間t取何值時(shí),△BEF的面積最大?
(3)當(dāng)運(yùn)動(dòng)時(shí)間為秒時(shí),在坐標(biāo)軸上是否存在點(diǎn)P,使△PEF的周長(zhǎng)最?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
解:(1)∵四邊形AOCB為正方形 ,∴AB=BC=OC=OA。
設(shè)點(diǎn)B坐標(biāo)為(,),
,∴,解得
又∵點(diǎn)B在第一象限,∴點(diǎn)B坐標(biāo)為(4,4)。
將點(diǎn)B(4,4)代入,
∴反比例函數(shù)解析式為。
(2)∵運(yùn)動(dòng)時(shí)間為t,動(dòng)點(diǎn)E的速度為每秒1個(gè)單位,點(diǎn)F 的速度為每秒2個(gè)單位,
∴AE=t, BF。
∵AB=4,∴BE=。
。
∴S關(guān)于t的函數(shù)關(guān)系式為;當(dāng)時(shí),△BEF的面積最大。
(3)存在。
當(dāng)時(shí),點(diǎn)E的坐標(biāo)為(,4),點(diǎn)F的坐標(biāo)為(4,),
①作F點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)F1,得F1(4,),經(jīng)過(guò)點(diǎn)E、F1作直線,
由E,4),F(xiàn)1(4,)可得直線EF1的解析式是
當(dāng)時(shí),,∴P點(diǎn)的坐標(biāo)為(,0)。
②作E點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)E1,得E1,4),經(jīng)過(guò)點(diǎn)E1、F作直線,
由E1,4),F(xiàn)(4,)可得直線E1F的解析式是,
當(dāng)時(shí),,∴P點(diǎn)的坐標(biāo)為(0,)。
綜上所述,P點(diǎn)的坐標(biāo)分別為(,0)或(0,)。

試題分析:(1)根據(jù)正方形的性質(zhì)和△BOC的面積為,列式求出點(diǎn)B的坐標(biāo),代入,即可求得k,從而求得反比例函數(shù)的關(guān)系式。
(2)根據(jù)雙動(dòng)點(diǎn)的運(yùn)動(dòng)時(shí)間和速度表示出BF和BE,即可求得S關(guān)于t的函數(shù)關(guān)系式,化為頂點(diǎn)式即可根據(jù)二次函數(shù)的最值原理求得△BEF的面積最大時(shí)t的值。
(3)根據(jù)軸對(duì)稱(chēng)的原理,分F點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)F1和E點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)E1兩種情況討論。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=一x2+ax+b圖象與軸交于,兩點(diǎn),且與軸交于點(diǎn).

(1)則的形狀為                 ;
(2)在此拋物線上一動(dòng)點(diǎn),使得以四點(diǎn)為頂點(diǎn)的四邊形是梯形,則點(diǎn)的坐標(biāo)為                     .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知拋物線C經(jīng)過(guò)原點(diǎn),對(duì)稱(chēng)軸與拋物線相交于第三象限的點(diǎn)M,與x軸相交于點(diǎn)N,且。

(1)求拋物線C的解析式;
(2)將拋物線C繞原點(diǎn)O旋轉(zhuǎn)1800得到拋物線,拋物線與x軸的另一交點(diǎn)為A,B為拋物線上橫坐標(biāo)為2的點(diǎn)。
①若P為線段AB上一動(dòng)點(diǎn),PD⊥y軸于點(diǎn)D,求△APD面積的最大值;
②過(guò)線段OA上的兩點(diǎn)E、F分別作x軸的垂線,交折線O-B-A于E1、F1,再分別以線段EE1、FF1為邊作如圖2所示的等邊△AE1E2、等邊△AF1F2,點(diǎn)E以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)O向點(diǎn)A運(yùn)動(dòng),點(diǎn)F以每秒1個(gè)長(zhǎng)度單位的速度從點(diǎn)A向點(diǎn)O運(yùn)動(dòng),當(dāng)△AE1E2有一邊與△AF1F2的某一邊在同一直線上時(shí),求時(shí)間t的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將拋物線向左平移1個(gè)單位,再向下平移3個(gè)單位后所得拋物線的解析式為【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的圖像與圖像的形狀、開(kāi)口方向相同,只是位置不同,則二次函數(shù)的頂點(diǎn)坐標(biāo)是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)y=ax2+bx的圖象如圖所示,那么一次函數(shù)y=ax+b的圖象大致是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,頂點(diǎn)為M的拋物線經(jīng)過(guò)點(diǎn)A和x軸正半軸上的點(diǎn)B,AO=OB=2,∠AOB=1200

(1)求這條拋物線的表達(dá)式;
(2)連接OM,求∠AOM的大小;
(3)如果點(diǎn)C在x軸上,且△ABC與△AOM相似,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,對(duì)于下列結(jié)論:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正確的個(gè)數(shù)是【   】
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

銅仁市某電解金屬錳廠從今年1月起安裝使用回收凈化設(shè)備(安裝時(shí)間不計(jì)),這樣既改善了環(huán)境,又降低了原料成本,根據(jù)統(tǒng)計(jì),在使用回收凈化設(shè)備后的1至x月的利潤(rùn)的月平均值w(萬(wàn)元)滿足w=10x+90.
(1)設(shè)使用回收凈化設(shè)備后的1至x月的利潤(rùn)和為y,請(qǐng)寫(xiě)出y與x的函數(shù)關(guān)系式.
(2)請(qǐng)問(wèn)前多少個(gè)月的利潤(rùn)和等于1620萬(wàn)元?

查看答案和解析>>

同步練習(xí)冊(cè)答案