如圖,菱形ABCD由6個腰長為2,且全等的等腰梯形鑲嵌而成,則菱形的對角線AC的長為______.
根據圖象可知∠ADC=2∠A,又∠ADC+∠A=180°,
∴∠A=60°,
∵AB=AD,
∴梯形的上底邊長=腰長=2,
∴梯形的下底邊長=4(可以利用過上底頂點作腰的平行線得出),
∴AB=2+4=6,
∴AC=2ABsin60°=2×6×
3
2
=6
3

故答案為:6
3
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ABCD,對角線AC⊥BD于P點,點A在y軸上,點C、D在x軸上.
(1)若BC=10,A(0,8),求點D的坐標;
(2)若BC=13
2
,AB+CD=34,求過B點的反比例函數(shù)的解析式;
(3)如圖,在PD上有一點Q,連接CQ,過P作PE⊥CQ交CQ于S,交DC于E,在DC上取EF=DE,過F作FH⊥CQ交CQ于T,交PC于H,當Q在PD上運動時,(不與P、D重合),
PQ
PH
的值是否發(fā)生變化?若變化,求出變化范圍;若不變,求出其值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,已知ADBC,AB=CD,AE⊥BC于E,∠B=60°,∠DAC=45°,AC=
6
,求梯形ABCD的周長?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,等腰梯形ABCD中,ABCD,AB=15,AD=20,∠C=30°.點M、N同時以相同的速度分別從點A、點D開始在AB、DA上向點B、點A運動.
(1)設ND的長為x,用x表示出點N到AB的距離;
(2)當五邊形BCDNM面積最小時,請判斷△AMN的形狀.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直角梯形ABCD中,∠BCD=90°,ADBC,BC=CD,E為梯形內一點,且∠BEC=90°,將△BEC繞C點旋轉90°使B與D重合,得到△DCF,連EF交CD于M.已知BC=5,CF=3,則DM:MC的值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知梯形ABCD中,ADBC,AD=2,BC=4,對角線AC=5,BD=3,試求此梯形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知ABDC,AE⊥DC,AE=12,BD=15,AC=20.則梯形ABCD的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,ADBC,AB=DC=AD=2,BC=4.求∠B的度數(shù)及AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點O,E,F(xiàn)分別是AD、BC的中點,連接EF,分別交AC、BD于點M,N,試判斷△OMN的形狀,并加以證明;(提示:利用三角形中位線定理)
(2)如圖2,在四邊形ABCD中,若AB=CD,E,F(xiàn)分別是AD、BC的中點,連接FE并延長,分別與BA,CD的延長線交于點M,N,請在圖2中畫圖并觀察,圖中是否有相等的角?若有,請直接寫出結論:______;
(3)如圖3,在△ABC中,AC>AB,點D在AC上,AB=CD,E,F(xiàn)分別是AD、BC的中點,連接FE并延長,與BA的延長線交于點M,若∠FEC=45°,判斷點M與以AD為直徑的圓的位置關系,并簡要說明理由.

查看答案和解析>>

同步練習冊答案