4.如圖,矩形ABCD中,AB=4,AD=3,點(diǎn)E、F分別在邊AB,CD上,且∠FEA=60°,連接EF,將∠BEF對(duì)折,點(diǎn)B落在直線EF上的點(diǎn)B′處,得折痕EM;將∠AEF對(duì)折,點(diǎn)A落在直線EF上的點(diǎn)A′處,得折痕EN,當(dāng)M,N分別在邊BC,AD上時(shí).若令△A′B′M的面積為y,AE的長(zhǎng)度為x,則y關(guān)于x的函數(shù)解析式是(  )
A.y=-$\sqrt{3}$x2+6$\sqrt{3}$x-8$\sqrt{3}$B.y=-2$\sqrt{3}$x2-12$\sqrt{3}$x+16$\sqrt{3}$
C.y=2$\sqrt{3}$x2+12$\sqrt{3}$x-16$\sqrt{3}$D.y=-$\frac{\sqrt{3}}{3}$x2+2$\sqrt{3}$x-$\frac{8\sqrt{3}}{3}$

分析 由折疊性質(zhì)可得AE=A′E=x、∠BEM=∠B′EM=60°、∠B=∠EB′M=90°、BE=B′E=4-x,繼而可得BM=BM′=BEtan∠BEM=$\sqrt{3}$(4-x)、A′B′=A′E-B′E=2x-4,根據(jù)三角形面積公式即可得.

解答 解:∵∠AEF=60°,
∴∠BEF=120°,
由題意知,∠BEM=∠B′EM=60°,∠B=∠EB′M=90°,BE=B′E=4-x,
∴BM=BM′=BEtan∠BEM=$\sqrt{3}$(4-x),
又∵AE=A′E=x,
∴A′B′=A′E-B′E=x-(4-x)=2x-4,
∵S△A′B′M=$\frac{1}{2}$×A′B′×B′M,
∴y=$\frac{1}{2}$(2x-4)[$\sqrt{3}$(4-x)]=-$\sqrt{3}$x2+6$\sqrt{3}$x-8$\sqrt{3}$,
故選:A.

點(diǎn)評(píng) 本題主要考查根據(jù)實(shí)際問題列二次函數(shù)解析式,熟練掌握折疊前后對(duì)應(yīng)邊相等、對(duì)應(yīng)角相等的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

查看答案和解析>>

同步練習(xí)冊(cè)答案