【題目】某校數(shù)學(xué)興趣小組開(kāi)展了一次課外活動(dòng),過(guò)程如下:如圖①,正方形ABCD中,AB=4,將三角板放在正方形ABCD上,使三角板的直角頂點(diǎn)與D點(diǎn)重合.三角板的一邊交AB于點(diǎn)P,另一邊交BC的延長(zhǎng)線于點(diǎn)Q.

(1)求證:AP=CQ;
(2)如圖②,小明在圖1的基礎(chǔ)上作∠PDQ的平分線DE交BC于點(diǎn)E,連接PE,他發(fā)現(xiàn)PE和QE存在一定的數(shù)量關(guān)系,請(qǐng)猜測(cè)他的結(jié)論并予以證明;
(3)在(2)的條件下,若AP=1,求PE的長(zhǎng).

【答案】
(1)證明:∵四邊形ABCD是正方形,

∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,

∵∠PDQ=90°,

∴∠ADP=∠CDQ,

在△APD和△CQD中,

,

∴△APD≌△CQD(ASA),

∴AP=CQ


(2)解;PE=QE,理由如下:

由(1)得:△APD≌△CQD,

∴PD=QD,

∵DE平分∠PDQ,

∴∠PDE=∠QDE,

在△PDE和△QDE中,

,

∴△PDE≌△QDE(SAS),

∴PE=QE


(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,

∴BQ=BC+CQ=5,BP=AB﹣AP=3,

設(shè)PE=QE=x,則BE=5﹣x,

在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,

解得:x=3.4,

即PE的長(zhǎng)為3.4


【解析】(1)由正方形的性質(zhì)得出∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,證出∠ADP=∠CDQ,由ASA證明△APD≌△CQD,得出對(duì)應(yīng)邊相等即可;(2)由全等三角形的性質(zhì)得出PD=QD,證出∠PDE=∠QDE,由SAS證明△PDE≌△QDE,得出對(duì)應(yīng)邊相等即可;(3)由(2)和(1)得出PE=QE,CQ=AP=1,求出BQ=BC+CQ=5,BP=AB﹣AP=3,設(shè)PE=QE=x,則BE=5﹣x,在Rt△BPE中,由勾股定理得出方程,解方程即可.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四邊形ABCD的周長(zhǎng)為32.

(1)求∠BDC的度數(shù);
(2)四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x=-1是關(guān)于x的方程2xa1的解,則a的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)邊長(zhǎng)為4cm的正方形折疊圍成一個(gè)四棱柱的側(cè)面,若該四棱柱的底面是一個(gè)正方形,則此正方形邊長(zhǎng)為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在平行四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,過(guò)點(diǎn)O的直線EF分別與AD、BC交于點(diǎn)E、F,EF⊥AC,連結(jié)AF、CE.

(1)求證:OE=OF;
(2)請(qǐng)判斷四邊形AECF是什么特殊四邊形,請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將矩形紙片ABCD按如圖所示的方式折疊.恰好得到菱形AECF.若AD= ,則菱形AECF的面積為(

A.2
B.4
C.4
D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x23x40的一次項(xiàng)系數(shù)是( 。

A.1B.3C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面兩個(gè)多位數(shù)1248624…… ,6248624…… ,都是按照如下方法得到的:將第一位數(shù)字乘以2,若積為一位數(shù),將其寫(xiě)在第2位上,若積為兩位數(shù),則將其個(gè)位數(shù)字寫(xiě)在第2位.對(duì)第2位數(shù)字再進(jìn)行如上操作得到第3位數(shù)字……,后面的每一位數(shù)字都是由前一位數(shù)字進(jìn)行如上操作得到的.當(dāng)?shù)?/span>1位數(shù)字是3時(shí),仍按如上操作得到一個(gè)多位數(shù),則這個(gè)多位數(shù)前100位的所有數(shù)字之和是( )

A. 495 B. 497 C. 501 D. 503

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=2x與反比例函數(shù)y=在第一象限內(nèi)的圖像交于點(diǎn)A(m,2),將直線y=2x向下平移后與反比例函數(shù)y=在第一象限內(nèi)的圖像交于點(diǎn)P,且△POA的面積為2.

(1)求k的值;

(2)求平移后的直線的函數(shù)解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案