(1)點(0,2)繞坐標原點順時針旋轉(zhuǎn)90°得到的點的坐標是______;
(2)已知直線l1:y=2x-4分別與x軸、y軸相交于A、B兩點,直線l1繞點B順時針旋轉(zhuǎn)90°得到直線l2,則直線l2的解析式為______;
(3)若(2)中直線l1繞點M(-1,0)順時針旋轉(zhuǎn)90°得到直線l3,求直線l3的解析式.
【答案】
分析:(1)根據(jù)旋轉(zhuǎn)變換的定義進行求解;
(2)先根據(jù)旋轉(zhuǎn)變換的性質(zhì)找出點A旋轉(zhuǎn)后的對應(yīng)點的坐標是(4,-6),再利用待定系數(shù)法即可求解;
(3)先確定點A繞點M旋轉(zhuǎn)后的對應(yīng)點的坐標是(-1,-3),點B繞點順時針旋轉(zhuǎn)90°得到的對應(yīng)點是(-5,-1),再利用待定系數(shù)法求解.
解答:解:(1)(2,0);
(2)當x=0時,y=2×0-4=-4,
當y=0時,2x-4=0,解得x=2,
∴點A、B的坐標分別是A(2,0),B(0,-4),
直線l
1繞點B順時針旋轉(zhuǎn)90°,點A的對應(yīng)點是(4,-6),
設(shè)直線l
2的解析式為y=kx+b,
則
,
解得
,
∴直線l
2的解析式為y=-
x-4;
(3)點A(2,0)繞點M(-1,0)順時針旋轉(zhuǎn)90°得到的對應(yīng)點是(-1,-3),
點B(0,-4)繞點M(-1,0)順時針旋轉(zhuǎn)90°得到的對應(yīng)點是(-5,-1),
設(shè)直線l
3的解析式的解析式是y=mx+n,
則
,
解得
,
∴直線l
3的解析式是y=-
x-
.
點評:本題考查了一次函數(shù)圖象與幾何變換,待定系數(shù)法求函數(shù)解析式,找出找出關(guān)鍵點旋轉(zhuǎn)變換后的對應(yīng)點的坐標是解題的關(guān)鍵,難度中等.