【題目】恒昌路是一條東西走向的馬路,有市場、醫(yī)院、車站、學(xué)校四家公共場所。已知市場在醫(yī)院東200米,車站在市場東150米,醫(yī)院在學(xué)校東450米。若將馬路近似的看成一條直線,以醫(yī)院為原點,向東方向為正方向,用1個單位長度表示100米,
(1)在數(shù)軸上表示出四家公共場所的位置;
(2)列式計算學(xué)校與車站之間的距離.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請完成下列的相似測試.
如圖,在△ABC中,AB=AC=4,D是AB上一點,且BD=1,連接CD,然后作∠CDE=∠B,交平行于BC且過點A的直線于點E,DE交AC于點F,連接CE.
(1)求證:△AFD∽△EFC;
(2)試求AEBC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABE中,點A、B是反比例函數(shù)y=(k≠0)圖象上的兩點,點E在x軸上,延長線段AB交y軸于點C,點B恰為線段AC中點,過點A作AD⊥x軸于點D.若S△ABE=,DE=2OE,則k的值為( 。
A.6B.﹣6C.9D.﹣9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出問題:一口袋裝有除顏色外均相同的2個紅球1個白球和1個籃球,小剛和小明想通過摸球來決定誰去看電影,同學(xué)甲設(shè)計了如下的方案:第一次隨機從口袋中摸出一球(不放回);第二次再任意摸出一球,兩人勝負(fù)規(guī)則如下:摸到“一紅一白”,則小剛看電影;摸到“一白一藍(lán)”,則小明看電影.
(1)同學(xué)甲的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)你若認(rèn)為這個方案不公平,那么請你改變一下規(guī)則,設(shè)計一個公平的方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在正方形ABCD中,E是AB上一點,G是AD上一點,∠ECG=45°,那么EG與圖中兩條線段的和相等?證明你的結(jié)論.
(2)請用(1)中所積累的經(jīng)驗和知識完成此題,如圖,在四邊形ABCG中,AG//BC(BC>AG),∠B=90°,AB=BC=12,E是AB上一點,且∠ECG=45°,BE=4,求EG的長?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汾河孕育著世代的龍城子孫,而魅力汾河兩岸那“新外灘”的稱號,將太原人對汾河的愛表露無遺…貫穿太原的汾河,讓橋,也成為太原的文化符號,讓汾河兩岸,也成為繁華的必爭之地!北中環(huán)橋是世界上首座對稱五拱反對稱五跨非對稱斜拉索橋,2013年開工建設(shè),當(dāng)年實現(xiàn)全線竣工通車.這座橋造型現(xiàn)代,宛如一條騰飛巨龍.
小蕓和小剛分別在橋面上的A,B處,準(zhǔn)備測量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測得∠CAB=36°,小剛在B處測得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結(jié)果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:大數(shù)學(xué)家高斯在上學(xué)讀書時曾經(jīng)研究過這樣一個問題:1+2+3+…+100=?經(jīng)過研究,這個問題的一般性結(jié)論是1+2+3+…+n=n(n+1),其中n是正整數(shù).現(xiàn)在我們來研究一個類似的問題:1×2+2×3+…n(n+1)=?
觀察下面三個特殊的等式:
1×2=(1×2×3﹣0×1×2)
2×3=(2×3×4﹣1×2×3)
3×4=(3×4×5﹣2×3×4)
將這三個等式的兩邊相加,可以得到1×2+2×3+3×4=×3×4×5=20,
讀完這段材料,請你思考后回答:
(1)1×2+2×3+…+10×11=________________;
(2)1×2+2×3+3×4+…+n×(n+1)=_________________________;
(3)1×2×3+2×3×4+…+n(n+1)(n+2)=______________________________.
(只需寫出結(jié)果,不必寫中間的過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,點M為邊AB的中點.
(1)如圖1,點G為線段CM上的一點,且∠AGB=90°,延長AG、BG分別與邊BC、CD交于點E、F.
①求證:BE=CF;
②求證:BE2=BCCE.
(2)如圖2,在邊BC上取一點E,滿足BE2=BCCE,連接AE交CM于點G,連接BG并延長交CD于點F,求tan∠CBF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(2,4),B(1,1),C(4,3).
(1)請畫出△ABC關(guān)于x軸對稱的△A1B1C1,并寫出點A1的坐標(biāo);
(2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2BC2;
(3)求出(2)中C點旋轉(zhuǎn)到C2點所經(jīng)過的路徑長(結(jié)果保留根號和π);
(4)求出(2)△A2BC2的面積是多少.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com