A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①根據(jù)角平分線的定義可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)可得AE=$\sqrt{2}$AB,從而得到AE=AD,然后利用“角角邊”證明△ABE和△AHD全等;從而判斷出①正確;
②由①可得AB=BE=CD=HD,繼而證得∠EDH=∠EDC,然后由角平分線的性質(zhì),證得②正確;
③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角邊角”證明△BEH和△HDF全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BH=HF,判斷出③正確;
④判斷出△ABH不是等邊三角形,從而得到AB≠BH,即AB≠HF,得到④錯(cuò)誤.
解答 解:∵在矩形ABCD中,AE平分∠BAD,
∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,
∴AE=$\sqrt{2}$AB,
∵AD=$\sqrt{2}$AB,
∴AE=AD,
在△ABE和△AHD中,
$\left\{\begin{array}{l}{∠BAE=∠DAE}\\{∠ABE=∠AHD=90°}\\{AE=AD}\end{array}\right.$,
∴△ABE≌△AHD(AAS),故①正確;
∴BE=DH,
∴AB=BE=CD=HD,
∴∠ADE=∠AED=$\frac{1}{2}$(180°-45°)=67.5°,
∴∠CED=180°-45°-67.5°=67.5°,
∴∠AED=∠CED,
∵∠C=90°,DH⊥AE,
∴∠EDH=∠EDC,
∴HE=CE;故②正確;
∵AB=AH,
∵∠AHB=$\frac{1}{2}$(180°-45°)=67.5°,
∴∠OHE=∠AHB=67.5°,
∴∠DHO=90°-67.5°=22.5°,
∵∠EBH=90°-67.5°=22.5°,
∴∠EBH=∠OHD,
在△BEH和△HDF中,
$\left\{\begin{array}{l}{∠EBH=∠OHD=22.5°}\\{BE=DH}\\{∠AEB=∠HDF=45°}\end{array}\right.$,
∴△BEH≌△HDF(ASA),
∴BH=HF,
即H是BF的中點(diǎn);故③正確;
∵AB=AH,∠BAE=45°,
∴△ABH不是等邊三角形,
∴AB≠BH,
∴即AB≠HF,故④錯(cuò)誤;
綜上所述,結(jié)論正確的是①②③共3個(gè).
故選:C.
點(diǎn)評(píng) 此題屬于四邊形的綜合題.考查了矩形的性質(zhì)、等腰直角三角形的性質(zhì)、等腰三角形的判定與性質(zhì)以及全等三角形的判定與性質(zhì).注意根據(jù)相等的度數(shù)求出相等的角,從而得到三角形全等的條件或判斷出等腰三角形是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3個(gè) | B. | 4個(gè) | C. | 5個(gè) | D. | 6個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 平均數(shù)為6,方差為1 | B. | 平均數(shù)為6,方差為4 | ||
C. | 平均數(shù)為8,方差為1 | D. | 平均數(shù)為8,方差為4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com