已知:四邊形ABCD,AD∥BC,∠A=90°.
(1)若AD=BC,判斷四邊形ABCD的形狀,并說明理由;
(2)如圖,若AD<BC,cos∠C=數(shù)學(xué)公式,DC=AD+BC.設(shè)AD=x,BC=y,求y與x的函數(shù)關(guān)系式,并畫出它的圖象.

解:(1)四邊形ABCD為矩形,
∵AD∥BC,AD=BC,
∴四邊形ABCD為平行四邊形,
又∵∠A=90°,
∴四邊形ABCD是矩形.

(2)如圖,過點D作DE⊥BC于點E,
∵AD=x,BC=y,DC=AD+BC,
∴EC=y-x,DC=x+y.
在Rt△DEC中,∠DEC=90°,cos∠C=,
,即
∴y=4x(x>0)
如圖所示:
分析:(1)根據(jù)平行線的判定得出四邊形ABCD為平行四邊形進(jìn)而利用矩形的判定得出即可;
(2)利用銳角三角函數(shù)的關(guān)系得出cos∠C=,得出,即,即可得出y與x的函數(shù)關(guān)系,進(jìn)而畫出圖象.
點評:此題主要考查了平行線的判定以及矩形的判定和銳角三角函數(shù)的關(guān)系等知識,根據(jù)已知得出=是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:如果四邊形中一對頂點到另一對頂點所連對角線的距離相等,則把這對頂點叫做這個四邊形的一對等高點.例如:如圖1,平行四邊形ABCD中,可證點A、C到BD的距離相等,所以點A、C是平行四邊形ABCD的一對等高點,同理可知點B、D也是平行四邊形ABCD的一對等高點.
(1)如圖2,已知平行四邊形ABCD,請你在圖2中畫出一個只有一對等高點的四邊形ABCE(要求:畫出必要的輔助線);
(2)已知P是四邊形ABCD對角線BD上任意一點(不與B、D點重合),請分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關(guān)系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
①如圖3,當(dāng)四邊形ABCD只有一對等高點A、C時,你得到的一個結(jié)論是
 
;
②如圖4,當(dāng)四邊形ABCD沒有等高點時,你得到的一個結(jié)論是
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知,四邊形ABCD是菱形,AC=6,BD=8,求AB的長和菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

34、如圖:在平行四邊形ABCD中,∠B=30°,AE⊥BC于點E,AF⊥DC的延長線于點F,已知平行四邊形ABCD的周長為40cm,且AE:AF=2:3.求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在四邊形ABCD中,AC與BD相交于點O,AB⊥AC,CD⊥BD.
(1)求證:△AOD∽△BOC;
(2)若sin∠ABO=
23
,S△AOD=4,求S△BOC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知平行四邊形ABCD,E是邊AB的中點,聯(lián)結(jié)AC、DE交于點O.記向量
AB
=
a
AD
=
b
,則向量
OE
=
1
6
a
-
1
3
b
1
6
a
-
1
3
b
(用向量
a
b
表示).

查看答案和解析>>

同步練習(xí)冊答案