【題目】函數(shù)yx2+3x+2的圖象如圖1所示,根據(jù)圖象回答問題:

1)當(dāng)x滿足   時,x2+3x+20;

2)在解決上述問題的基礎(chǔ)上,探究解決新問題:

函數(shù)y的自變量x的取值范圍是   ;

下表是函數(shù)y的幾組yx的對應(yīng)值.

x

7

6

4

3

2

1

0

1

3

4

y

5.477

4.472

2.449

1.414

0

0

1.414

2.449

4.472

5.477

如圖2,在平面直角坐標(biāo)系xOy中,描出了上表中各對對應(yīng)值為坐標(biāo)的點的大概位置,請你根據(jù)描出的點,畫出該函數(shù)的圖象:

③利用圖象,直接寫出關(guān)于x的方程x4=x2+3x+2的所有近似實數(shù)解 (結(jié)果精確到0.1

【答案】1x<﹣2x>﹣1;(2)①x≤﹣2x≥﹣1;②詳見解析;0.8(﹣0.9~﹣0.6)和1.81.61.9).

【解析】

1)根據(jù)圖象與x軸的交點坐標(biāo)即可得結(jié)論;

2)①根據(jù)(1)所得結(jié)論即可求解;

②根據(jù)平面直角坐標(biāo)系中描出的點即可畫出函數(shù)圖象;

③結(jié)合圖象可得出答案;

解:(1)觀察圖象可知:

y0,即圖象在x軸的上方的部分,

所以x<﹣2x>﹣1

故答案為x<﹣2x>﹣1

2)①根據(jù)(1)的結(jié)論可知:

自變量x的取值范圍是x≤2x≥1

②如圖即為畫出的函數(shù)圖象.

③根據(jù)所畫的圖象可知:

所求方程的解為y=交點的橫坐標(biāo)

所以近似實數(shù)解為:-0.8(-0.9~-0.6)和1.8(1.6~1.9).
故答案為-0.8(-0.9~-0.6)和1.8(1.6~1.9).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,函數(shù)(是常數(shù),)在同一平面直角坐標(biāo)系的圖象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給出如下定義:對于⊙O的弦MN和⊙O外一點PM,O,N三點不共線,且點P,O在直線MN的異側(cè)),當(dāng)∠MPN+∠MON180°時,則稱點P是線段MN關(guān)于點O的關(guān)聯(lián)點.圖1是點P為線段MN關(guān)于點O的關(guān)聯(lián)點的示意圖.

在平面直角坐標(biāo)系xOy中,⊙O的半徑為1

1)如圖2,已知M,),N,﹣),在A1,0),B1,1),C,0)三點中,是線段MN關(guān)于點O的關(guān)聯(lián)點的是   ;

2)如圖3M0,1),N,﹣),點D是線段MN關(guān)于點O的關(guān)聯(lián)點.

①∠MDN的大小為   ;

②在第一象限內(nèi)有一點Emm),點E是線段MN關(guān)于點O的關(guān)聯(lián)點,判斷△MNE的形狀,并直接寫出點E的坐標(biāo);

③點F在直線y=﹣x+2上,當(dāng)∠MFN≥∠MDN時,求點F的橫坐標(biāo)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點A、D分別在x軸、y軸上,∠ADO30°,OA2,反比例函y經(jīng)過CD的中點M,那么k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=﹣x2+2x+3

1)用配方法將該二次函數(shù)化成yaxh2+k的形式,并寫出頂點坐標(biāo);

2)在圖中畫出該二次函數(shù)的圖象(不需要列表),并寫出該圖象與x軸的交點;

3)當(dāng)0x3時,直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=ax2﹣2x+1和y=ax+a(a是常數(shù),且a0)在同一直角坐標(biāo)系中的圖象可能是(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標(biāo)系內(nèi),△ABC的三個頂點坐標(biāo)分別為A(1,4),B(1,1),C(3,1).

(1)畫出△ABC關(guān)于x軸對稱的△A1B1C1

(2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;

(3)在(2)的條件下,求線段BC掃過的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請將寬為3cm、長為ncm的長方形(n為正整數(shù))分割成若干小正方形,要求小正方形的邊長是正整數(shù)且個數(shù)最少.例如,當(dāng)n5cm時,此長方形可分割成如右圖的4個小正方形.

請回答下列問題:

1n16時,可分割成幾個小正方形?

2)當(dāng)長方形被分割成20個小正方形時,求n所有可能的值;

3)一般地,n3時,此長方形可分割成多少個小正方形.

查看答案和解析>>

同步練習(xí)冊答案