【題目】如圖,在中,、是對角線上兩點,,,,則的大小為___________

【答案】21°.

【解析】

由直角三角形斜邊中線的性質(zhì)得DEAEEF,進(jìn)而可得DCDE,設(shè)∠ADEx,則∠DAEx,進(jìn)而可得∠DCE=∠DEC2x,再根據(jù)平行線的性質(zhì)可得 ACB∠DAEx,再根據(jù)∠ACB+∠ACD=∠BCD=63°,即可求得答案.

AEEF,∠ADF90°,

DEAEEF,

∠DAE=ADE,

又∵AEEFCD,

DCDE

∴∠DEC=DCE,

設(shè)∠ADEx,則∠DAEx,

則∠DCE=∠DEC2x

ADBC,

∴∠ACB∠DAEx,

∠ACB+∠ACD=∠BCD=63°,

得:x+2x63°,

解得:x21°,

∠ADE=21°,

故答案為:21°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角板是我們學(xué)習(xí)數(shù)學(xué)的好幫手.將一對直角三角板如圖放置,點CFD的延長線上,點BED上,ABCF,∠F=∠ACB90°,∠E45°,∠A60°,AC10,則CD的長度是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀(jì)念品生產(chǎn)訂單,按要求在15天內(nèi)完成,約定這批紀(jì)念品的出廠價為每件20元,設(shè)第x天(1≤x≤15,且x為整數(shù))每件產(chǎn)品的成本是p元,p與x之間符合一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如表:

天數(shù)(x)

1

3

6

10

每件成本p(元)

7.5

8.5

10

12

任務(wù)完成后,統(tǒng)計發(fā)現(xiàn)工人李師傅第x天生產(chǎn)的產(chǎn)品件數(shù)y(件)與x(天)滿足如下關(guān)系:y=

設(shè)李師傅第x天創(chuàng)造的產(chǎn)品利潤為W元.

(1)直接寫出p與x,W與x之間的函數(shù)關(guān)系式,并注明自變量x的取值范圍:

(2)求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?

(3)任務(wù)完成后.統(tǒng)計發(fā)現(xiàn)平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當(dāng)天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】高爾基說:書,是人類進(jìn)步的階梯.閱讀可以豐富知識、拓展視野、充實生活等諸多益處.為了解學(xué)生的課外閱讀情況,某校隨機抽查了部分學(xué)生閱讀課外書冊數(shù)的情況,并繪制出如下統(tǒng)計圖,其中條形統(tǒng)計圖因為破損丟失了閱讀5冊書數(shù)的數(shù)據(jù).

1)求條形圖中丟失的數(shù)據(jù),并寫出閱讀書冊數(shù)的眾數(shù)和中位數(shù);

2)根據(jù)隨機抽查的這個結(jié)果,請估計該校1200名學(xué)生中課外閱讀5冊書的學(xué)生人數(shù);

3)若學(xué)校又補查了部分同學(xué)的課外閱讀情況,得知這部分同學(xué)中課外閱讀最少的是6冊,將補查的情況與之前的數(shù)據(jù)合并后發(fā)現(xiàn)中位數(shù)并沒有改變,試求最多補查了多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸、y軸分別交于BC兩點,拋物線經(jīng)過B、C兩點,且與x軸交于點A

1)求該拋物線的函數(shù)表達(dá)式;

2)已知點M是第一象限內(nèi)拋物線上的一個動點,過點MMN平行于y軸交直線BC于點N,連接AM、BM、AN,求四邊形MANB面積S的最大值,并求出此時點M的坐標(biāo);

3)拋物線的對稱軸交直線BC于點D,若Qy軸上一點,則在拋物線上是否存在一點P,使得以B、D、P、Q為頂點的四邊形是平行四邊形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由邊長為1的小正方形構(gòu)成的網(wǎng)格,每個小正方形的頂點叫做格點.四邊形的頂點在格點上,點是邊與網(wǎng)格線的交點.請選擇適當(dāng)?shù)母顸c,用無刻度的直尺在網(wǎng)格中完成下列畫圖,保留連線的痕跡,不要求說明理由

1)如圖1,過點畫線段,使,且

2)如圖1,在邊上畫一點,使

3)如圖2,過點畫線段,使,且

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場為了抓住夏季來臨,襯衫熱銷的契機,決定用46000元購進(jìn)、、三種品牌的襯衫共300件,并且購進(jìn)的每一種襯衫的數(shù)量都不少于90.設(shè)購進(jìn)種型號的襯衣件,購進(jìn)種型號的襯衣件,三種品牌的襯衫的進(jìn)價和售價如下表所示:

型號

進(jìn)價(元/件)

100

200

150

售價(元/件)

200

350

300

(Ⅰ)直接用含、的代數(shù)式表示購進(jìn)種型號襯衣的件數(shù),其結(jié)果可表示為______

(Ⅱ)求之間的函數(shù)關(guān)系式;

(Ⅲ)如果該商場能夠?qū)①忂M(jìn)的襯衫全部售出,但在銷售這些襯衫的過程中還需要另外支出各種費用共計1000.

①求利潤(元)與(件)之間的函數(shù)關(guān)系式;

②求商場能夠獲得的最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)、兩種商品,購買1商品比購買1商品多花10元,并且花費300元購買商品和花費100元購買商品的數(shù)量相等.

1)求購買一個商品和一個商品各需要多少元;

2)商店準(zhǔn)備購買、兩種商品共80個,若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,已知拋物線軸相交于、兩點(點在點的左側(cè)),與軸交于點.

1)點的坐標(biāo)為__________,點的坐標(biāo)為__________,線段的長為__________,拋物線的解析式為__________.

2)點是線段下方拋物線上的一個動點.

①如果在軸上存在點,使得以點、、、為頂點的四邊形是平行四邊形.求點的坐標(biāo).

②如圖2,過點交線段于點,過點作直線于點,交軸于點,記,求關(guān)于的函數(shù)解析式;當(dāng)時,試比較的對應(yīng)函數(shù)值的大小.

查看答案和解析>>

同步練習(xí)冊答案