________點確定一條直線.

答案:
解析:

直線的性質(zhì)


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

15、把下列命題改寫成“如果…那么…”的形式.
(1)銳角小于90°.答:
如果一個角是銳角,那么這個角小于90°
;
(2)兩點確定一條直線.答:
如果在平面上有兩個點,那么過這兩個點確定一條直線
;
(3)相等的角是對頂角.答:
如果如果兩個角相等,那么這兩個角是對頂角

(4)全等三角形的對應(yīng)角相等,對應(yīng)邊相等.答:
如果兩個三角形全等,那么這兩個三角形的對應(yīng)角相等,對應(yīng)邊相等
;
(5)垂直于同一條直線的兩條直線平行.答:
如果在同一平面內(nèi)兩條直線垂直于同一條直線,那么這兩條直線平行
;
(6)直角都相等.答:
如果這幾個角是直角,那么這些角都相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列命題中,假命題的個數(shù)有( 。
(1)無限小數(shù)是無理數(shù);  (2)式子
a
是二次根式;
(3)三點確定一條直線;  (4)多邊形的邊數(shù)越多,內(nèi)角和越大.
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

把下列命題改寫成“如果…那么…”的形式.
(1)銳角小于90°.答:
如果一個角是銳角,那么這個角小于90°
如果一個角是銳角,那么這個角小于90°

(2)兩點確定一條直線.答:
如果在平面上有兩個點,那么過這兩個點確定一條直線;
如果在平面上有兩個點,那么過這兩個點確定一條直線;

(3)相等的角是對頂角.答:
如果兩個角相等,那么這兩個角是對頂角
如果兩個角相等,那么這兩個角是對頂角

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀以下材料并填空:平面上有n個點(n≥2)且任意三個點不在同一直線上,過這些點作直線一共能作出多少條不同的直線?
分析:當僅有兩個點時,可連成1條直線;當有3個點時,可連成3條直線;當有4個點時,可連成6條直線,當有5個點時可連成10條直線…
推導(dǎo):平面上有n個點,因為兩點可確定一條直線,所以每個點都可與除本身之外的其余(n-1)個點確定一條直線,即共有
n(n-1)條直線.但因AB與BA是同一條直線,故每一條直線都數(shù)了2遍,所以直線的實際總條數(shù)為
n(n-1)
2

試結(jié)合以上信息,探究以下問題:
平面上有n(n≥3)個點,任意3個點不在同一直線上,過任意3點作三角形,一共能作出多少個不同的三角形?
分析:考察點的個數(shù)n和可作出的三角形的個數(shù) sn,發(fā)現(xiàn):(填下表)
點的個數(shù) 可連成的三角形的個數(shù)
3
1
1
4
4
4
5
10
10
n
n(n-1)(n-2)
6
n(n-1)(n-2)
6
推導(dǎo):
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即Sn=
n(n-1)(n-2)
6
平面上有n個點,過不在同一直線上的三點可以確定1個三角形,取第一個點A有n種取法,取第二個點B有(n-1)種取法.取第三個點C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個三角形,故應(yīng)除以6,即Sn=
n(n-1)(n-2)
6

查看答案和解析>>

同步練習冊答案