【題目】已知:如圖,ABC內(nèi)接于O,AB為直徑,CBA的平分線交AC于點(diǎn)F,交O于點(diǎn)D,DEAB于點(diǎn)E,且交AC于點(diǎn)P,連結(jié)AD.

(1)求證:DAC=DBA;

(2)求證:P是線段AF的中點(diǎn);

(3)連接CD,若CD3,BD4,求O的半徑和DE的長(zhǎng).

【答案】(1)證明見(jiàn)解析

(2)證明見(jiàn)解析

(3)O的半徑為2.5,DE的長(zhǎng)為2.4.

【解析】

試題分析:(1)利用角平分線的性質(zhì)得出CBD=DBA,進(jìn)而得出DAC=DBA;

(2)利用圓周角定理得出ADB=90°,進(jìn)而求出PDF=PFD,則PD=PF,求出PA=PF,即可得出答案;

(3)利用勾股定理得出AB的長(zhǎng),再利用三角形面積求出DE即可.

試題解析:(1)BD平分CBA,∴∠CBD=DBA,∵∠DAC與CBD都是弧CD所對(duì)的圓周角,

∴∠DAC=CBD,∴∠DAC=DBA;

(2)AB為直徑,

∴∠ADB=90°,

DEAB于E,

∴∠DEB=90°,

∴∠1+3=5+3=90°,

∴∠1=5=2,

PD=PA,

∵∠4+2=1+3=90°,且ADB=90°

∴∠3=4,

PD=PF,

PA=PF,即P是線段AF的中點(diǎn);

(3)連接CD,

∵∠CBD=DBA,

CD=AD,

CD3,AD=3,

∵∠ADB=90°,

AB=5,

O的半徑為2.5,

DE×AB=AD×BD,

5DE=3×4,

DE=2.4.

即DE的長(zhǎng)為2.4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,若將類似于a、b、c、d四個(gè)圖的圖形稱做平面圖,則其頂點(diǎn)數(shù)、邊數(shù)與區(qū)域數(shù)之間存在某種關(guān)系.觀察圖b和表中對(duì)應(yīng)的數(shù)值,探究計(jì)數(shù)的方法并作答.
(1)數(shù)一數(shù)每個(gè)圖中各有多少個(gè)頂點(diǎn)、多少條邊,這些邊圍出多少個(gè)區(qū)域并填表:

a

b

c

d

頂點(diǎn)數(shù)(S)

7

邊數(shù)(M)

9

區(qū)域數(shù)(N)

3


(2)根據(jù)表中數(shù)值,寫出平面圖的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間的一種關(guān)系;
(3)如果一個(gè)平面圖有20個(gè)頂點(diǎn)和11個(gè)區(qū)域,那么利用(2)中得出的關(guān)系可知這個(gè)平面圖有條邊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】填空:把下面的推理過(guò)程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由.
已知:如圖,△ABC中,D、E分別為AB、AC的中點(diǎn),過(guò)點(diǎn)C作CF//AB交DE的延長(zhǎng)線于F.求證:AB=2CF.

證明:∵CF//AB(已知),
∴∠ADE=∠F( ),
∵E為AC的中點(diǎn)(已知),
∴AE=CE(中點(diǎn)的定義).
在△ADE與△CFE中,

∴△ADE△CFE(
∴AD=CF(
∵D為AB的中點(diǎn)
∴AB=2AD(中點(diǎn)的定義)
∴AB=2CF(等量代換)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校積極響應(yīng)上級(jí)的號(hào)召,舉行了決不讓一個(gè)學(xué)生因貧困而失學(xué)的捐資助學(xué)活動(dòng),其中6個(gè)班同學(xué)的捐款平均數(shù)如下表:

班級(jí)

一班

二班

三班

四班

五班

六班

捐款平均數(shù)(元)

6

4.6

4.1

3.8

4.8

5.2

則這組數(shù)據(jù)的中位數(shù)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將拋物線yx22x+3向上平移2個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度后,得到的拋物線的解析式為( 。

A.y=(x12+4B.y=(x42+4C.y=(x+22+6D.y=(x42+6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知l1∥l2 , AC、BC、AD為三條角平分線,則圖中與∠1互為余角的角有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】-2不是(  ).
A.有理數(shù)
B.自然數(shù)
C.整數(shù)
D.負(fù)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,﹣4),且過(guò)點(diǎn)B(3,0).

(1)求該二次函數(shù)的解析式;

(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線C:y=mx2+4x+1.

(1)當(dāng)拋物線C經(jīng)過(guò)點(diǎn)A(﹣5,6)時(shí),求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);

(2)若拋物線C:y=mx2+4x+1(m0)與x軸的交點(diǎn)的橫坐標(biāo)都在﹣1和0之間(不包括﹣1和0),結(jié)合函數(shù)的圖象,求m的取值范圍;

(3)參考(2)小問(wèn)思考問(wèn)題的方法解決以下問(wèn)題:

關(guān)于x的方程x﹣4=在0x4范圍內(nèi)有兩個(gè)解,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案