如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,-1).
(1)把△ABC向上平移5個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標;
(2)以原點O為對稱中心,再畫出與△A1B1C1關(guān)于原點O對稱的△A2B2C2,并寫出點C2的坐標;
(3)△ABC與△A2B2C2是否是旋轉(zhuǎn)對稱圖形?若是,指出旋轉(zhuǎn)中心坐標;若不是,請說明理由.
【答案】分析:(1)將A、B、C按平移條件找出它的對應(yīng)點,順次連接,即得到平移后的圖形;
(2)利用關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分,分別找出A、B、C的對應(yīng)點,順次連接,即得到相應(yīng)的圖形;
(3)利用①的對應(yīng)點到旋轉(zhuǎn)中心的距離相等,②對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角,即可作出判斷.
解答:解:(1)(2)畫圖如下:

其中C1坐標為(4,4),C2坐標為(-4,-4).
(3)△ABC與△A2B2C2是旋轉(zhuǎn)對稱圖形,旋轉(zhuǎn)中心為(0,-2.5).(2分)
點評:無論是何種變換都需先找出各關(guān)鍵點的對應(yīng)點,然后順次連接即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

22、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(2,-1).
(1)把△ABC先向上平移4個單位得△A1B1C1,再沿x軸翻折得△A2B2C2,請在網(wǎng)格中畫出△A2B2C2,并寫出C2的坐標.
(2)以原點為位似中心,在第二象限內(nèi)畫出△ABC的位似圖形△A3B3C3,且△A3B3C3與△ABC的相似比為2,并寫出C3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連續(xù)為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形,在建立平面直角坐標系后,點B的坐標為(-1,-1)把△ABC繞點C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C,畫出△A1B1C的圖形,并寫出點B1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(-1,0)
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中的每個小正方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上,O、M都在格點上.
(1)畫出△ABC關(guān)于直線OM對稱的△A1B1C1;
(2)畫出將△ABC繞點O按順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形碼?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中的每個小方格都是邊長為1的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,A(-1,5),B(-1,0),C(-4,3).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;(其中A1、B1、C1是A、B、C的對應(yīng)點,不寫畫法)
(2)寫出A1、B1、C1的坐標;
(3)求出△A1B1C1的面積.

查看答案和解析>>

同步練習冊答案