【題目】直角三角形的外接圓半徑為5,內(nèi)切圓半徑為2,則此三角形周長為_____

【答案】24

【解析】

⊙IABE,切BCF,切ACD,連接IEIF,ID,得出四邊形CDIF是正方形,則CDCF2,根據(jù)切線長定理,得到ADAE,BEBFCFCD,然后根據(jù)線段的和差關(guān)系,即可得到答案.

解:⊙IABE,切BCF,切ACD,連接IE,IF,ID,

∠CDI∠C∠CFI90°,IDIF2

四邊形CDIF是正方形,

∴CDCF2,

由切線長定理得:ADAE,BEBF,CFCD,

直角三角形的外接圓半徑為5,內(nèi)切圓半徑為2,

∴AB10AE+BEBF+AD

△ABC的周長是AC+BC+ABAD+CD+CF+BF+AB10+2+2+1024,

故答案為:24

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知反比例函數(shù),下列結(jié)論中不正確的是(

A.圖象必經(jīng)過點 B. 的增大而增大

C.圖象在第二,四象限內(nèi)D.,則

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為2,將射線AB繞點A順時針旋轉(zhuǎn)α,所得射線與線段BD交于點M,作CEAM于點E,點N與點M關(guān)于直線CE對稱,連接CN

(1)如圖,當0°<α<45°時:

①依題意補全圖;

②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;

(2)當45°<α<90°時,探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;

(3)當0°<α<90°時,若邊AD的中點為F,直接寫出線段EF長的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點Ax1y1)、Bx2,y2)在二次函數(shù)yx2mxn的圖像上,當x11、x23時,y1y2

1)若Pa,b1),Q3,b2)是函數(shù)圖象上的兩點,b1b2,則實數(shù)a的取值范圍是(

Aa1 Ba3 Ca1a3 D1a3

2)若拋物線與x軸只有一個公共點,求二次函數(shù)的表達式.

3)若對于任意實數(shù)x1、x2都有y1y2≥2,則n的范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為1,點E為邊AB上一動點,連結(jié)CE并將其繞點C順時針旋轉(zhuǎn)90°得到CF,連結(jié)DF,以CE、CF為鄰邊作矩形CFGE,GEAD、AC分別交于點H、M,GFCD延長線于點N

1)證明:點AD、F在同一條直線上;

2)隨著點E的移動,線段DH是否有最小值?若有,求出最小值;若沒有,請說明理由;

3)連結(jié)EF、MN,當MNEF時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明大學畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160,花卉的平均每盆利潤是19,調(diào)研發(fā)現(xiàn):

①盆景每增加1盆景的平均每盆利潤減少2;每減少1,盆景的平均每盆利潤增加2;②花卉的平均每盆利潤始終不變.

小明計劃第二期培植盆景與花卉共100設(shè)培植的盆景比第一期增加x,第二期盆景與花卉售完后的利潤分別為W1,W2(單位元)

(1)用含x的代數(shù)式分別表示W1,W2;

(2)當x取何值時第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,扇形ABC的圓心角為90°,半徑為6,將扇形ABCA點逆時針旋轉(zhuǎn)得到扇形ADE,點BC的對應(yīng)點分別為點D、E,若點D剛好落在上,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在紙片中, ,學習小組進行如下操作:、如圖2,沿折疊使點落在延長線上的點處,點.上一點,如圖3,將圖2展平后,再沿折疊使點落在點處,點分別在邊上,將圖3展平得到圖4,連接,請在圖4中解決下列問題:

1)判斷四邊形的形狀, 并證明你的結(jié)論;

2)若,求四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,點Elcm/s的速度從點A向點D運動,運動時間為ts),連結(jié)BE,過點EEFBE,交CDF,以EF為直徑作⊙O

1)求證:∠1=2;

2)如圖2,連結(jié)BF,交⊙O于點G,并連結(jié)EG.已知AB=4,AD=6

①用含t的代數(shù)式表示DF的長

②連結(jié)DG,若EGD是以EG為腰的等腰三角形,求t的值;

3)連結(jié)OC,當tanBFC=3時,恰有OCEG,請直接寫出tanABE的值.

查看答案和解析>>

同步練習冊答案