如圖,D、E、F分別是△ABC的邊AB、BC、CA的中點,則圖中共有________個平行四邊形.

3
分析:根據(jù)三角形的中位線定理得出EF∥AB,DF∥BC,DE∥AC,根據(jù)有兩組對邊分別平行的四邊形是平行四邊形推出即可.
解答:有3個平行四邊形,有平行四邊形ADEF,平行四邊形CFDE,平行四邊形BEFD,
理由是:∵D、E、F分別是△ABC的邊AB、BC、CA的中點,
∴EF∥AB,DF∥BC,
∴四邊形BEFD是平行四邊形,
同理四邊形ADEF是平行四邊形,四邊形CFDE是平行四邊形,
故答案為:3.
點評:本題考查了平行四邊形的判定和三角形的中位線的應用,關鍵是推出EF∥AB,DF∥BC,DE∥AC,主要考查學生運用定理進行推理的能力.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖1,在正方形ABCD中,點E、F分別為邊BC、CD的中點,AF、DE相交于點G,則可得結論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點E、F不是正方形ABCD的邊BC、CD的中點,但滿足CE=DF,則上面的結論①、②是否仍然成立;(請直接回答“成立”或“不成立”)
(2)如圖③,若點E、F分別在正方形ABCD的邊CB的延長線和DC的延長線上,且CE=DF,此時上面的結論①、②是否仍然成立?若成立,請寫出證明過程;若不成立,請說明理由.
(3)如圖④,在(2)的基礎上,連接AE和EF,若點M、N、P、Q分別為AE、EF、FD、AD的中點,請先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫出證明過程.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)某花木場有一塊形如等腰梯形ABCD的空地(如圖),各邊中點分別為E、F、G、H,測得對角線AC=5m,若用籬笆圍成四邊形EFGH的場地,則需籬笆總長度為
 
m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖中所有的線段可分別表示為
線段AB,BC,AC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,經(jīng)過原點O的⊙C分別與x軸、y軸交于點A、B,P為
OBA
上一點.若∠OPA=60°,OA=4
3
,則OB的長為
4
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,分別以AB、AD為邊向外作等邊△ABE、△ADF,延長CB交AE于點G,點G在點A,
E之間,連接CE、CF、EF,有下列四個結論:
①△CDF≌△EBC;     ②∠CDF=∠EAF;
③△ECF是等邊三角形;  ④CG⊥AE,
請把你認為正確的結論的序號填在橫線上
①②③
①②③

查看答案和解析>>

同步練習冊答案