18、已知四邊形ABCD中,AC交BD于點O,如果只給條件“AB∥CD”,那么還不能判定四邊形ABCD為平行四邊形,給出以下四種說法:
(1)如果再加上條件“BC=AD”,那么四邊形ABCD一定是平行四邊形;
(2)如果再加上條件“∠BAD=∠BCD”,那么四邊形ABCD一定是平行四邊形;
(3)如果再加上條件“AO=OC”,那么四邊形ABCD一定是平行四邊形;
(4)如果再加上條件“∠DBA=∠CAB”,那么四邊形ABCD一定是平行四邊形
其中正確的說法是
(2)(3)
分析:平行四邊形的五種判定方法分別是:(1)兩組對邊分別平行的四邊形是平行四邊形;(2)兩組對邊分別相等的四邊形是平行四邊形;(3)一組對邊平行且相等的四邊形是平行四邊形;(4)兩組對角分別相等的四邊形是平行四邊形;(5)對角線互相平分的四邊形是平行四邊形.根據(jù)平行四邊形的判定,加上四選項中的條件,逐一進行驗證.
解答:解:其中正確的說法是(2)、(3).因為再加上條件“∠BAD=∠BCD”,即可求得另一組對角相等,那么四邊形ABCD一定是平行四邊形;如果再加上條件“AO=OC”,即可證明△AOB≌△COD,所以,AB=DC,那么四邊形ABCD一定是平行四邊形.
故答案為:(2)(3).
點評:平行四邊形的判定方法共有五種,應用時要認真領會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
45

求S△ABD:S△BCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、已知四邊形ABCD中,AB=BC=CD,∠B=90°,根據(jù)這樣的條件,能判定這個四邊形是正方形嗎?若能,請你指出判定的依據(jù);若不能,請舉出一個反例(即畫出一個四邊形滿足上述條件,但不是正方形),并指出若再添加一個什么條件,就可以判定這個四邊形是正方形,你能指出幾種情況嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知四邊形ABCD中,給出下列四個論斷:(1)AB∥CD,(2)AB=CD,(3)AD=BC,(4)AD∥BC.以其中兩個論斷作為條件,余下兩個作為結論,可以構成一些命題.在這些命題中,正確命題的個數(shù)有(  )
A、2個B、3個C、4個D、6個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

選做題:(A)已知四邊形ABCD中,AD∥BC,對角線AC、BD交于點O,∠OBC=∠OCB,并且
 
,求證:四邊形ABCD是
 
形.(要求在已知條件中的橫線上補上一個條件
 
,在求證中的橫線上添上該四邊形的形狀,然后畫出圖形,予以證明,證明時要用上所有條件)
(B)某市市委、市府2001年提出“工業(yè)立市”的口號,積極招商引資,財政收入穩(wěn)步增長,各年度財政收入如下表:
年 份 2001 2002 2003 2004
財政收入
單位(億元)
10 10.5 12 14.5
按這種增長趨勢,請你算一算2006年該市的財政收入是多少億元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知四邊形ABCD中,E、F、G、H分別為AB、BC、CD、DA的中點,
①求證:四邊形EFGH是平行四邊形.
②探索下列問題,并選擇一個進行證明.
a.原四邊形ABCD的對角線AC、BD滿足
AC⊥BD
AC⊥BD
時,四邊形EFGH是矩形.
b.原四邊形ABCD的對角線AC、BD滿足
AC=BD
AC=BD
時,四邊形EFGH是菱形.
c.原四邊形ABCD的對角線AC、BD滿足
AC⊥BD且AC=BD
AC⊥BD且AC=BD
時,四邊形EFGH是正方形.

查看答案和解析>>

同步練習冊答案