已知,等腰梯形ABCD,AB∥CD,∠A=60°,AC平分∠DAB,E是AB的中點(diǎn).試判斷四邊形DAEC是什么圖形,并證明你的結(jié)論.
【答案】分析:等腰梯形的底角相等,腰相等,且知道鄰邊相等的平行四邊形是平行四邊形.
解答:解:四邊形DAEC是菱形.
∵∠DAB=60°,AC平分∠DAB,
∴∠CAB=30°,
∵∠B=∠DAB=60°,
∴∠ACB=90°,
∵E是AB的中點(diǎn),
∴CE=BE=AE,
∵∠B=60°,
∴△CEB為等邊三角形,
∴∠CEB=∠DAC=60°,
∴DA∥CE,
∵DC∥AE,
∴四邊形DAEC是平行四邊形,
∵CE=AE,
∴四邊形DAEC是菱形.
點(diǎn)評(píng):本題考查等腰三角形的性質(zhì)和菱形的判定定理,要熟記這些性質(zhì)和判定定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀材料:
如圖(1),在四邊形ABCD中,對(duì)角線AC⊥BD,垂足為點(diǎn)P.求證:S四邊形ABCD=
1
2
AC•BD;
證明:∵AC⊥BD,
S△ACD=
1
2
AC•PD
S△ABC=
1
2
AC•BP

∴S四邊形ABCD=S△ACD+S△ACB=
1
2
AC•PD+
1
2
AC•BP
=
1
2
AC(PD+PB)=
1
2
AC•BD
解答問(wèn)題:
(1)上述證明得到的性質(zhì)可敘述為
 

(2)已知:如圖(2),在等腰梯形ABCD中,AD∥BC,對(duì)角線AC⊥BD,且相交于點(diǎn)P,AD=3cm,BC=7cm,利用上述性質(zhì)求梯形的面積.
(3)如圖(3),用一塊面積為800cm2的等腰梯形彩紙做風(fēng)箏,并用兩根竹條作梯形的對(duì)角線固定風(fēng)箏,對(duì)角線恰好互相垂直,問(wèn)竹條的長(zhǎng)是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在△ABC中,AB=AC,∠ABC=36°,將△ABC繞著點(diǎn)B逆時(shí)針旋轉(zhuǎn)36°后得到精英家教網(wǎng)△EBF,點(diǎn)A落在點(diǎn)E處,點(diǎn)C落在點(diǎn)F處,連接CF.請(qǐng)你畫(huà)出圖形,并按下面要求完成本題.
(1)求證四邊形BCFE是等腰梯形;
(2)求證:AF=
5
-1
2
AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,已知在等腰梯形ABCD中,AD∥BC,∠ABC=45°,兩腰的和為8cm,點(diǎn)E,F(xiàn)分別是對(duì)角線AC,BD的中點(diǎn),點(diǎn)G是底邊BC的中點(diǎn),則EF的長(zhǎng)為


  1. A.
    4數(shù)學(xué)公式cm
  2. B.
    2數(shù)學(xué)公式cm
  3. C.
    數(shù)學(xué)公式cm
  4. D.
    無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京同步題 題型:解答題

已知,等腰梯形ABCD中,AD∥BC,∠ABC=60°,AC⊥BD,AB=4cm ,求梯形ABCD的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,等腰梯形ABCD中,AB∥DC,AC⊥BC,  點(diǎn)E是AB的中點(diǎn),EC∥AD,則∠ABC等于(    )

A.750        B.700      C.600      D.300

查看答案和解析>>

同步練習(xí)冊(cè)答案