【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A(3,0)和點(diǎn)B(2,3),過點(diǎn)A的直線與y軸的負(fù)半軸相交于點(diǎn)C,且tan∠CAO= .
(1)求這條拋物線的表達(dá)式及對(duì)稱軸;
(2)聯(lián)結(jié)AB、BC,求∠ABC的正切值;
(3)若點(diǎn)D在x軸下方的對(duì)稱軸上,當(dāng)S△DBC=S△ADC時(shí),求點(diǎn)D的坐標(biāo).
【答案】
(1)解:把A(3,0)和點(diǎn)B(2,3)代入y=﹣x2+bx+c得到 ,
解得 ,
∴拋物線的解析式為y=﹣x2+2x+3,
對(duì)稱軸x=1
(2)解:如圖,作BE⊥OA于E.
∵A(3,0),B(2,3),tan∠CAO= ,
∴OC=1,
∴BE=OA=3,AE=OC=1,∵AEB=∠AOC,
∴△AOC≌△BEA,
∴AC=AB,∠CAO=∠BAE,
∵∠ABE+∠BAE=90°,
∴∠CAO+∠BAE=90°,
∴∠CAB=90°,
∴△ABC是等腰直角三角形,
∴∠ABC=45°,
∴tan∠ABC=1
(3)解:如圖過點(diǎn)C作CD∥AB交對(duì)稱軸于D,
則S△DBC=S△ADC,
∵AB⊥AC,AB∥CD,
∴AC⊥CD,
∵直線AC的解析式為y= x﹣1,
∴直線CD的解析式為y=﹣3x﹣1,當(dāng)x=1時(shí),y=﹣4,
∴點(diǎn)D的坐標(biāo)為(1,﹣4).
【解析】(1)把A(3,0)和點(diǎn)B(2,3)代入y=﹣x2+bx+c,解方程組即可解決問題.(2)如圖,作BE⊥OA于E.只要證明△AOC≌△BEA,推出△ABC是等腰直角三角形,即可解決問題.(3)如圖過點(diǎn)C作CD∥AB交對(duì)稱軸于D,則S△DBC=S△ADC , 先求出直線AC的解析式,再求出直線CD的解析式即可解決問題.
【考點(diǎn)精析】通過靈活運(yùn)用拋物線與坐標(biāo)軸的交點(diǎn)和解直角三角形,掌握一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△OAB的頂點(diǎn)A在x軸的正半軸上,BC=2AC , 點(diǎn)B、C在反比例函數(shù)y= (x>0)的圖象上,則△OAB的面積為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=x2﹣2x+m(m>0)的對(duì)稱軸與比例系數(shù)為5的反比例函數(shù)圖象交于點(diǎn)A,與x軸交于點(diǎn)B,拋物線的圖象與y軸交于點(diǎn)C,且OC=3OB.
(1)求點(diǎn)A的坐標(biāo);
(2)求直線AC的表達(dá)式;
(3)點(diǎn)E是直線AC上一動(dòng)點(diǎn),點(diǎn)F在x軸上方的平面內(nèi),且使以A、B、E、F為頂點(diǎn)的四邊形是菱形,直接寫出點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面算式,解答問題:
……
(1)請(qǐng)求出1 3 5 7 9 11的結(jié)果為 ;
請(qǐng)求出1 3 5 7 9 29 的結(jié)果為 ;
(2)若n 表示正整數(shù),請(qǐng)用含 n 的代數(shù)式表示1 3 5 7 9 (2n 1) (2n 1) 的值為
(3)請(qǐng)用上述規(guī)律計(jì)算: 41 43 45 77 79 的值(要求寫出詳細(xì)解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長(zhǎng)方形ABCD沿著對(duì)角線BD折疊,使點(diǎn)C落在處,交AD于點(diǎn)E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一張矩形紙片ABCD沿EF折疊后,點(diǎn)A落在CD邊上的點(diǎn)A′處,點(diǎn)B落在點(diǎn)B′處,若∠2=40°,則圖中∠1的度數(shù)為( )
A.115°
B.120°
C.130°
D.140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校初四年級(jí)學(xué)生每周平均課外閱讀時(shí)間的情況,隨機(jī)抽查了該學(xué)校初四年級(jí)m名同學(xué),對(duì)其每周平均課外閱讀時(shí)間進(jìn)行統(tǒng)計(jì),繪制了如下條形統(tǒng)計(jì)圖(圖一)和扇形統(tǒng)計(jì)圖(圖二):
(1)根據(jù)以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計(jì)圖中閱讀時(shí)間為5小時(shí)的扇形圓心角的度數(shù).
③補(bǔ)全條形統(tǒng)計(jì)圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、CD為 O的直徑,弦AE//CD,連接BE交CD于點(diǎn)F,過點(diǎn)E作直線EP與CD的延長(zhǎng)線交于點(diǎn)P,使 PED= C.
(1)求證:PE是 O的切線;
(2)求證:ED平分 BEP;
(3)若 O的半徑為5,CF=2EF,求PD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線 AB,CD 相交于點(diǎn)O,OE 平分∠AOD,OF⊥OC.
(1)圖中∠AOF 的余角是_____ _____(把符合條件的角都填出來);
(2)如果∠AOC=120°,那么根據(jù)____ ______,可得∠BOD=__________°;
(3)如果∠1=32°,求∠2和∠3的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com