【題目】在△ABC中,AB=10cm,BC=16cm,∠B=90°,點P從點A開始沿著AB邊向點B以1cm/s的速度移動(到B停止),點Q從點B開始沿著BC邊向點C以2cm/s的速度移動(到C停止).如果P、Q分別從A、B同時出發(fā),經(jīng)過幾秒鐘,使△PBQ的面積是△ABC面積的?
【答案】經(jīng)過4秒或6秒,△PBQ的面積是△ABC面積的.
【解析】
設(shè)經(jīng)過x秒鐘,△PBQ的面積是△ABC面積的,分0<x≤8及8<x≤10兩種情況,根據(jù)三角形的面積公式找出關(guān)于x的一元二次方程(或一元一次方程),解之即可得出結(jié)論.
設(shè)經(jīng)過 x 秒鐘,△PBQ 的面積是△ABC 面積的, 當 0<x≤8 時,根據(jù)題意得:×2x(10﹣x)=×10×16×, 整理得:x2﹣10x+24=0,
解得:x1=4,x2=6;
當 8<x≤10 時,×16( 10﹣x)=×10×16× ,整理得:16x=112,
解得:x=7(舍去).
答:經(jīng)過4秒或6秒,△PBQ 的面積是△ABC面積的.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE⊥AC、CF⊥AB于點E、F,BE與CF交于點D,DE=DF,AF=AE,連結(jié)AD .
求證:(1)∠FAD=∠EAD;
(2)BD=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E,F分別為AD,CD的中點,BF與CE相交于點H,直線EN交CB的延長線于點N,作CM⊥EN于點M,交BF于點G,且CM=CD,有以下結(jié)論:①BF⊥CE;②ED=EM;③tan∠ENC=;④S四邊形DEHF=4S△CHF,其中正確結(jié)論的個數(shù)為()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于 x 的一元二次方程(x﹣1)(x﹣2)=m(m+1)
(1)試證明:無論 m 取何值此方程總有兩個實數(shù)根;
(2)若原方程的兩根 x1,x 2 滿足,求 m 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,動點E從點A出發(fā),以1cm/秒的速度沿折線AB—BC的路徑運動,到點C停止運動.過點E作 EF∥BD,EF與邊AD(或邊CD)交于點F,EF的長度y(cm)與點E的運動時間x(秒)的函數(shù)圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形OBC的邊長為10,點P沿O→B→C→O的方向運動,⊙P的半徑為 . ⊙P運動一圈與△OBC的邊相切________次,每次相切時,點P到等邊三角形頂點最近距離是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E為正方形ABCD內(nèi)一點,點F在CD邊上,且∠BEF=90°,EF=2BE.點G為EF的中點,點H為DG的中點,連接EH并延長到點P,使得PH=EH,連接DP.
(1)依題意補全圖形;
(2)求證:DP=BE;
(3)連接EC,CP,猜想線段EC和CP的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD=BE,∠D=∠E,∠ABC=∠DBE=90°,BF⊥AE,且點A,C,E在同一條直線上.
(1)求證:△DAB≌△ECB;
(2)若AD=3,AF=1,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,正方形OABC頂點B的坐標為(6,6),直線CD交直線OA于點D,直線OE交線段AB于點E,且CD⊥OE,垂足為點F,若圖中陰影部分的面積是正方形OABC的面積的,則△OFC的周長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com