如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(1,0)
①畫出△ABC關于x軸對稱的△A1B1C1;
②畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2;
③△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,畫出所有的對稱軸;
④△A1B1C1與△A2B2C2成中心對稱圖形嗎?若成中心對稱圖形,寫出所有的對稱中心的坐標.

【答案】分析:(1)將三角形的各頂點,向x軸作垂線并延長相同長度得到三點的對應點,順次連接;
(2)將三角形的各頂點,繞原點O按逆時針旋轉(zhuǎn)90°得到三點的對應點.順次連接各對應點得△A2B2C2;
(3)從圖中可發(fā)現(xiàn)成軸對稱圖形,根據(jù)軸對稱圖形的性質(zhì)畫出對稱軸即連接兩對應點的線段,做它的垂直平分線;
(4)成中心對稱圖形,畫出兩條對應點的連線,交點就是對稱中心.
解答:解:如下圖所示:

(3)成軸對稱圖形,根據(jù)軸對稱圖形的性質(zhì)畫出對稱軸即連接兩對應點的線段,作它的垂直平分線,
或連接A1C1,A2C2的中點的連線為對稱軸.
(4)成中心對稱,對稱中心為線段BB2的中點P,坐標是(,).
點評:本題綜合考查了圖形的變換,在圖形的變換中,關鍵是找到圖形的對應點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(2,-1).
(1)把△ABC先向上平移4個單位得△A1B1C1,再沿x軸翻折得△A2B2C2,請在網(wǎng)格中畫出△A2B2C2,并寫出C2的坐標.
(2)以原點為位似中心,在第二象限內(nèi)畫出△ABC的位似圖形△A3B3C3,且△A3B3C3與△ABC的相似比為2,并寫出C3的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,方格紙中的每個小方格都是邊長為1的正方形,我們把以格點間連續(xù)為邊的三角形稱為“格點三角形”,圖中的△ABC是格點三角形,在建立平面直角坐標系后,點B的坐標為(-1,-1)把△ABC繞點C按順時針方向旋轉(zhuǎn)90°后得到△A1B1C,畫出△A1B1C的圖形,并寫出點B1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點B的坐標為(-1,0)
(1)畫出△ABC關于y軸對稱的△A1B1C1
(2)畫出將△ABC繞原點O按逆時針旋轉(zhuǎn)90°所得的△A2B2C2;
(3)△A1B1C1與△A2B2C2成軸對稱圖形嗎?若成軸對稱圖形,寫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中的每個小正方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC的頂點均在格點上,O、M都在格點上.
(1)畫出△ABC關于直線OM對稱的△A1B1C1;
(2)畫出將△ABC繞點O按順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2
(3)△A1B1C1與△A2B2C2組成的圖形是軸對稱圖形碼?如果是軸對稱圖形,請畫出對稱軸.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,方格紙中的每個小方格都是邊長為1的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,A(-1,5),B(-1,0),C(-4,3).
(1)畫出△ABC關于y軸對稱的△A1B1C1;(其中A1、B1、C1是A、B、C的對應點,不寫畫法)
(2)寫出A1、B1、C1的坐標;
(3)求出△A1B1C1的面積.

查看答案和解析>>

同步練習冊答案