如圖,點(diǎn)P是⊙O的直徑BA延長(zhǎng)線上一點(diǎn),PC與⊙O相切于點(diǎn)C,CD⊥AB,垂足為D,連接AC、BC、OC,那么下列結(jié)論中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP;④OA(CP-CD)=AP•CD,正確的結(jié)論有( )個(gè).

A.1
B.2
C.3
D.4
【答案】分析:①證明△PBC∽△PCA,即可得到結(jié)論,這實(shí)際上是圓的切割線定理,正確;
②根據(jù)切線的性質(zhì)定理,得OC⊥PC,再根據(jù)直角三角形的面積公式即可證明結(jié)論,正確;
③根據(jù)直角三角形的射影定理,得OC2=OD•OP,再根據(jù)OA=OC,即可證明結(jié)論,正確;
④根據(jù)△APC的面積分析,顯然錯(cuò)誤.
解答:解:①∵PC與⊙O相切于點(diǎn)C,∴∠PCB=∠A,∠P=∠P
∴△PBC∽△PCA,
∴PC2=PA•PB

②∵OC⊥PC,
∴PC•OC=OP•CD

③∵CD⊥AB,OC⊥PC,
∴OC2=OD•OP,
∵OA=OC
∴OA2=OD•OP

④∵AP•CD=•OC•CP+OA•CD,OA=OC
∴OA(CP-CD)=AP•CD
所以正確的有①,②,③④,共4個(gè).
故選D.
點(diǎn)評(píng):綜合運(yùn)用切割線定理、射影定理、不同的角度表示同一個(gè)三角形的面積.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

6、如圖,把一塊含有30°的直角尺ACB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長(zhǎng)線上的點(diǎn)E重合,連接CD,則∠BCD的度數(shù)是
15°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆江蘇無(wú)錫宜興外國(guó)語(yǔ)學(xué)校八年級(jí)下學(xué)期期中數(shù)學(xué)試卷(解析版) 題型:填空題

反比例函數(shù)在第一象限內(nèi)的圖象如圖,點(diǎn)M是圖像上一點(diǎn),MP垂

直x軸于點(diǎn)P,如果△MOP的面積為8,那么k的值等于           。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,把一塊含有30°的直角尺ACB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長(zhǎng)線上的點(diǎn)E重合,連接CD,則∠BCD的度數(shù)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:山東省期末題 題型:填空題

如圖,把一塊含有30°的直角尺ACB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長(zhǎng)線上的點(diǎn)E重合,連接CD,則∠BCD的度數(shù)是(    ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:湖南省月考題 題型:填空題

如圖,把一塊含有30°的直角尺ACB繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使得點(diǎn)A與CB的延長(zhǎng)線上的點(diǎn)E重合,連接CD,則∠BCD的度數(shù)是 _________ 。

查看答案和解析>>

同步練習(xí)冊(cè)答案