【題目】如圖,AB是以BC為直徑的半圓O的切線,D為半圓上一點(diǎn),AD=AB,AD、BC的延長(zhǎng)線相交于點(diǎn)E.
(1)求證:AD是半圓O的切線;
(2)連結(jié)CD,求證:∠A=2∠CDE.
【答案】
(1)證明:連結(jié)OD,BD,
∵AB是⊙O的切線,
∴AB⊥BC,即∠ABC=90°,
∵AB=AD,
∴∠ABD=∠ADB,
∵OB=OD,
∴∠DBO=∠BDO,
∴∠ABD+∠DBO=∠ADB+∠BDO,
∴∠ADO=∠ABO=90°,
∴AD是半圓O的切線.
(2)解:由(1)知,∠ADO=∠ABO=90°,
∴∠A=360°﹣∠ADO﹣∠ABO﹣∠BOD=180°﹣∠BOD=∠DOC,
∵AD是半圓O的切線,
∴∠ODE=90°,
∴∠ODC+∠CDE=90°,
∵BC是⊙O的直徑,
∴∠ODC+∠BDO=90°,
∴∠BDO=∠CDE,
∵∠BDO=∠OBD,
∴∠DOC=2∠BDO,
∴∠DOC=2∠CDE,
∴∠A=2∠CDE.
【解析】(1)連接OD,BD,根據(jù)圓周角定理得到∠ABO=90°,根據(jù)等腰三角形的性質(zhì)得到∠ABD=∠ADB,∠DBO=∠BDO,根據(jù)等式的性質(zhì)得到∠ADO=∠ABO=90°,根據(jù)切線的判定定理即可得到即可;(2)由AD是半圓O的切線得到∠ODE=90°,于是得到∠ODC+∠CDE=90°,根據(jù)圓周角定理得到∠ODC+∠BDO=90°,等量代換得到∠DOC=2∠BDO,∠DOC=2∠CDE即可得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司有330臺(tái)機(jī)器要運(yùn)送到外地,計(jì)劃租用甲、乙兩種貨車.已知甲種貨車每輛租金400元,乙種貨車每輛租金280元,若租用3輛甲種貨車和2輛乙種貨車,可運(yùn)送195臺(tái)機(jī)器;若租用4輛甲種貨車和1輛乙種貨車,可運(yùn)送210臺(tái)機(jī)器;
(1)求每輛甲種貨車和乙種貨車能運(yùn)送的機(jī)器數(shù)量;
(2)請(qǐng)給出一次性將機(jī)器運(yùn)送到目的地的最節(jié)省費(fèi)用的租車方案,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是△ABC的中線,CE是△ABC的高,若AC=9,BC=12,AB=15.
(1)求CD的長(zhǎng).
(2)求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將三角形ABC向右平移5個(gè)單位長(zhǎng)度,再向上平移3個(gè)單位長(zhǎng)度請(qǐng)回答下列問題:
(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:A1 ,B1 ,C1 ;
(2)畫出平移后三角形A1B1C1;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一動(dòng)點(diǎn)從原點(diǎn)O出發(fā),按向上,向右,向下,向右的方向不斷地移動(dòng),每移動(dòng)一個(gè)單位,得到點(diǎn)A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2020坐標(biāo)為( )
A.(2020,1)B.(2020,0)C.(1010,1)D.(1010,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列條件:(1)∠A=25°,∠B=65°;(2)3∠A=2∠B=∠C;(3)∠A=5∠B;(4)2∠A=3∠B=4∠C中,其中能確定△ABC是直角三角形的條件有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將下列不等式化為“x>a”或“x<a”的形式:
(1)2x>3x-4;
(2)5x-1<14;
(3)-x<-3;
(4) x<x+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,下列條件中,能判斷直線L1∥L2的是( )
A. ∠2=∠3 B. ∠l=∠3 C. ∠4+∠5=180 D. ∠2=∠4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com