已知一元二次方程ax2+bx+c=0(a不等于0)滿足a+b+c=0,那么我們稱這個方程為鳳凰方程,若該方程有兩個相等的實數(shù)根,則


  1. A.
    a=c
  2. B.
    a=b
  3. C.
    b=c
  4. D.
    a=b=c
A
分析:由方程有兩個相等的實數(shù)根,得到根的判別式等于0,再由a+b+c=0,把表示出b代入根的判別式中,變形后即可得到a=c.
解答:∵方程有兩個相等實數(shù)根,且a+b+c=0,
∴b2-4ac=0,b=-a-c,
將b=-a-c代入得:a2+2ac+c2-4ac=(a-c)2=0,
則a=c.
故選A
點評:此題考查了根的判別式,以及一元二次方程的解,一元二次方程中根的判別式大于0,方程有兩個不相等的實數(shù)根;根的判別式等于0,方程有兩個相等的實數(shù)根;根的判別式小于0,方程無解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•西城區(qū)一模)已知一元二次方程x2+ax+a-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)y=x2+ax+a-2的圖象與x軸的兩個交點的距離為
13
時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為
3
13
2
?若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2+ax+b=0①,x2+bx+a=0②,方程①與方程②有且只有一個公共根,則a與b之間應滿足的關系式為
a+b+1=0
a+b+1=0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于A、B兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一元二次方程x2axa-2=0.
(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;
(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;
(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于AB兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012屆北京市西城區(qū)九年級一模數(shù)學卷(解析版) 題型:解答題

已知一元二次方程x2axa-2=0.

(1)求證:不論a為何實數(shù),此方程總有兩個不相等的實數(shù)根;

(2)設a<0,當二次函數(shù)yx2axa-2的圖象與x軸的兩個交點的距離為時,求出此二次函數(shù)的解析式;

(3)在(2)的條件下,若此二次函數(shù)圖象與x軸交于AB兩點,在函數(shù)圖象上是否存在點P,使得△PAB的面積為,若存在求出P點坐標,若不存在請說明理由.

【解析】(1)判斷上述方程的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了,(2)根據(jù)二次函數(shù)圖象與x軸的兩個交點的距離公式解答即可.(3)是二次函數(shù)綜合應用問題和三角形的綜合應用

 

查看答案和解析>>

同步練習冊答案