如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)E在BC上,四邊形EFGB也是正方形,以B為圓心,BA長(zhǎng)為半徑畫(huà),連結(jié)AF,CF,則圖中陰影部分面積為  

考點(diǎn):

正方形的性質(zhì);整式的混合運(yùn)算.

分析:

設(shè)正方形EFGB的邊長(zhǎng)為a,表示出CE、AG,然后根據(jù)陰影部分的面積=S扇形ABC+S正方形EFGB+S△CEF﹣S△AGF,列式計(jì)算即可得解.

解答:

解:設(shè)正方形EFGB的邊長(zhǎng)為a,則CE=4﹣a,AG=4+a,

陰影部分的面積=S扇形ABC+S正方形EFGB+S△CEF﹣S△AGF

=+a2+a(4﹣a)﹣a(4+a)

=4π+a2+2a﹣a2﹣2a﹣a2

=4π.

故答案為:4π.

點(diǎn)評(píng):

本題考查了正方形的性質(zhì),整式的混合運(yùn)算,扇形的面積計(jì)算,引入小正方形的邊長(zhǎng)這一中間量是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點(diǎn),且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,E點(diǎn)在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,正方形ABCD的邊長(zhǎng)為4,將一個(gè)足夠大的直角三角板的直角頂點(diǎn)放于點(diǎn)A處,該三角板的兩條直角邊與CD交于點(diǎn)F,與CB延長(zhǎng)線交于點(diǎn)E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長(zhǎng).
(2)觀察猜想BE與DG之間的關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案