(2009•河南)如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2.點O是AC的中點,過點O的直線l從與AC重合的位置開始,繞點O作逆時針旋轉(zhuǎn),交AB邊于點D,過點C作CE∥AB交直線l于點E,設直線l的旋轉(zhuǎn)角為α.
(1)①當α=______度時,四邊形EDBC是等腰梯形,此時AD的長為______;
②當α=______度時,四邊形EDBC是直角梯形,此時AD的長為______;
(2)當α=90°時,判斷四邊形EDBC是否為菱形,并說明理由.

【答案】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)和等腰梯形的性質(zhì),①假設四邊形EDBC是等腰梯形,根據(jù)題目已知條件及外角和定理可求α,AD;②假設四邊形EDBC是直角梯形,根據(jù)題目已知條件及內(nèi)角和定理可求α,AD.
(2)根據(jù)∠α=∠ACB=90°先證明四邊形EDBC是平行四邊形.再利用Rt△ABC中,∠ACB=90°,∠B=60°,BC=2求得AB,AC,AO的長度;在Rt△AOD中,∠A=30°,AD=2,可求BD,比較得BD=BC,可證明四邊形EDBC是菱形.
解答:解:(1)①當四邊形EDBC是等腰梯形時,
∵∠EDB=∠B=60°,而∠A=30°,
∴α=∠EDB-∠A=30°,
∴△ADO是等腰三角形,
∴AD=OD,
過點O作OF∥BC,
∵BC⊥AC,
∴OF⊥AC,
∴OF是△ABC的中位線,
∴OF=BC=1,
∵α=∠EDB-∠A=30°,
∴∠ODF=60°=∠DOF=60°,
∴△ODF是等邊三角形,
∴OD=OF=DF=1,
∵∠A=∠α=30°,
∴AD=OD=1;

②當四邊形EDBC是直角梯形時,∠ODA=90°,而∠A=30°,
根據(jù)三角形的內(nèi)角和定理,得α=90°-∠A=60°,此時,AD=AC×=1.5.

(2)當∠α=90°時,四邊形EDBC是菱形.
∵∠α=∠ACB=90°,
∴BC∥ED,
∵CE∥AB,
∴四邊形EDBC是平行四邊形.
在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,
∴∠A=30°,
∴AB=4,AC=2,
∴AO==
在Rt△AOD中,∠A=30°,OD=AD,
AD==
∴AD=2,
∴BD=2,
∴BD=BC.
又∵四邊形EDBC是平行四邊形,
∴四邊形EDBC是菱形.
點評:解決此問題,既要弄清等腰梯形、直角梯形及菱形的判定,又要掌握有關旋轉(zhuǎn)的知識,在直角三角形中,30度角所對的直角邊等于斜邊的一半,也是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年浙江省杭州市中考數(shù)學模擬試卷(23)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點P作PE⊥AB交AC于點E.
①過點E作EF⊥AD于點F,交拋物線于點G.當t為何值時,線段EG最長?
②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應的t值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點P作PE⊥AB交AC于點E.
①過點E作EF⊥AD于點F,交拋物線于點G.當t為何值時,線段EG最長?
②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應的t值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省名校中考數(shù)學模擬試卷(九)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點P作PE⊥AB交AC于點E.
①過點E作EF⊥AD于點F,交拋物線于點G.當t為何值時,線段EG最長?
②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應的t值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷(瓜瀝一中 趙桂清)(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點P作PE⊥AB交AC于點E.
①過點E作EF⊥AD于點F,交拋物線于點G.當t為何值時,線段EG最長?
②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應的t值.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年河南省中考數(shù)學試卷(解析版) 題型:解答題

(2009•河南)如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點B(4,0)、C(8,0)、D(8,8).拋物線y=ax2+bx過A、C兩點.
(1)直接寫出點A的坐標,并求出拋物線的解析式;
(2)動點P從點A出發(fā).沿線段AB向終點B運動,同時點Q從點C出發(fā),沿線段CD向終點D運動.速度均為每秒1個單位長度,運動時間為t秒.過點P作PE⊥AB交AC于點E.
①過點E作EF⊥AD于點F,交拋物線于點G.當t為何值時,線段EG最長?
②連接EQ.在點P、Q運動的過程中,判斷有幾個時刻使得△CEQ是等腰三角形?請直接寫出相應的t值.

查看答案和解析>>

同步練習冊答案