【題目】如圖,直線與直線交于點A,點A的橫坐標為,且直線與x軸交于點B,與y軸交于點D,直線與y軸交于點C.
(1)求點A的坐標及直線的函數表達式;
(2)連接,求的面積.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐示系xOy中,直線與直線交于點A(3,m).
(1)求k,m的値;
(2)己知點P(n,n),過點P作垂直于y軸的直線與直線交于點M,過點P作垂直于x軸的直線與直線交于點N(P與N不重合).若PN≤2PM,結合圖象,求n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,P(a,3)是直線y=x+5上的一點,直線 y=k1x+b與雙曲線相交于P、Q(1,m).
(1)求雙曲線的解析式及直線PQ的解析式;
(2)根據圖象直接寫出不等式>k1x+b的解集.
(3)若直線y=x+5與x軸交于A,直線y=k1x+b與x軸交于M求△APQ的面積
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,E為BC邊中點,以AD為直徑的⊙O與AE交于點F.
(1)求證:四邊形AOCE為平行四邊形;
(2)求證:CF與⊙O相切;
(3)若F為AE的中點,求∠ADF的大。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,二次函數y=mx2-(2m+1)x+m-5的圖象與x軸有兩個公共點.
()求m的取值范圍;
()若m取滿足條件的最小的整數,
①寫出這個二次函數的表達式;
②當n≤x≤1時,函數值y的取值范圍是-6≤y≤4-n,求n的值;
③將此二次函數圖象平移,使平移后的圖象經過原點O.設平移后的圖象對應的函數表達式為y=a(x-h(huán))2 +k,當x<2時,y隨x的增大而減小,求k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形中,過點作于點,點在邊上,,連接,.
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BE=5,AF平分∠DAB,求平行四邊形的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,直線AB交兩坐標軸于A(a,0)、B(0,b)兩點,且a,b滿足等式:+(b﹣4)2=0,點P為直線AB上第一象限內的一動點,過P作OP的垂線且與過B點且平行于x軸的直線相交于點Q,
(1)求A,B兩點的坐標;
(2)當P點在直線AB上的第一象限內運動時,AP﹣BQ的值變不變?如果不變,請求出這個定值;若變化請說明理由.
(3)延長QO與直線AB交于點M.請判斷出線段AP,BM,PM三條線段構成三角形的形狀,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰Rt△ABC中,CA=CB,∠ACB=90°,點O是AB的中點.
(1)如圖1,求證:CO=BO;
(2)如圖2,點M在邊AC上,點N在邊BC延長線上,MN﹣AM=CN,求∠MON的度數;
(3)如圖3,AD∥BC,OD∥AC,AD與OD交于點D,Q是OB的中點,連接CQ、DQ,試判斷線段CQ與DQ的關系,并給出證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com