【題目】如圖,直線過正方形ABCD的頂點B,點A、C到直E的距離分別是1和2,則正方形ABCD面積是____.
【答案】5.
【解析】
根據(jù)正方形性質(zhì)得出AB=CB,∠ABC=90°,求出∠EAB=∠FBC,證△AEB≌△BFC,求出BE=CF=2,在Rt△AEB中,由勾股定理求出AB,即可求出正方形的面積.
解:如圖,
∵四邊形ABCD是正方形,
∴AB=BC,∠ABC=90°,
∵AE⊥EF,CF⊥EF,
∴∠AEB=∠BFC=90°,
∴∠ABE+∠CBF=180°-90°=90°,∠ABE+∠EAB=90°,
∴∠EAB=∠CBF,
在△AEB和△BFC中,
,
∴△AEB≌△BFC(AAS),
∴BE=CF=2,
在Rt△AEB中,由勾股定理得: ,
即正方形ABCD的面積是5,
故答案為:5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知平行四邊形,過作于,交于,過作于,交于,連接、.
(1)求證:四邊形為平行四邊形;
(2)當為菱形,點為的中點時,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)=(≠0)圖象如圖所示,下列結(jié)論:①>0;②=0;③當≠1時,>;④>0;⑤若=,且≠,則=2.其中正確的有( )
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=(k為常數(shù),k≠1).
(1)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(2)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(3)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1、x2)、B(x2、y2),當y1>y2時,試比較x1與x2的大;
(4)若在其圖象上任取一點,向x軸和y軸作垂線,若所得矩形面積為6,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】菱形ABCD中,∠B=60°,點E,F分別是BC,CD上的兩個動點,且始終保持∠AEF=60°.
(1)試判斷△AEF的形狀并說明理由;
(2)若菱形的邊長為2,求△ECF周長的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當﹣1<x<3時,y>0,其中正確的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,點E為AB的中點,F為BC上任意一點,把△BEF沿直線EF翻折,點B的對應點B′落在對角線AC上,則與∠FEB一定相等的角(不含∠FEB)有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com