【題目】觀察下列方程及其解的特征:

(1) 的解為;(2)的解為

(3)的解為…………

解答下列問(wèn)題:

(1)請(qǐng)猜想:方程的解為

(2)請(qǐng)猜想:關(guān)于的方程的解為(a≠0);

(3)下面以解方程為例,驗(yàn)證(1)中猜想結(jié)論的正確性.

解:原方程可化為.(下面請(qǐng)大家用配方法寫(xiě)出解此方程的詳細(xì)過(guò)程)

【答案】

1 ,

2 (或

3 二次項(xiàng)系數(shù)化為1,得.配方,得,

開(kāi)方,得.解得,

經(jīng)檢驗(yàn),,都是原方程的解

【解析】

解此題首先要認(rèn)真審題,尋找規(guī)律,依據(jù)規(guī)律解題.解題的規(guī)律是將分式方程轉(zhuǎn)化為一元二次方程,再采用配方法即可求得.而且方程的兩根互為倒數(shù),其中一根為分母,另一根為分母的倒數(shù).

解:(1x1=5,x2=;

2(或a+);

3)方程二次項(xiàng)系數(shù)化為1,

x2-x=-1

配方得,

x2-x+(-)2=-1+(-)2,

?(x-)2=

開(kāi)方得,

x-

解得x1=5,x2=

經(jīng)檢驗(yàn),x1=5,x2=都是原方程的解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為改善交通擁堵?tīng)顩r,我市進(jìn)行了大規(guī)模的道路橋梁建設(shè).已知某路段乙工程隊(duì)單獨(dú)完成所需的天數(shù)是甲工程隊(duì)單獨(dú)完成所需天數(shù)的1.5倍,如果按甲工程隊(duì)單獨(dú)工作20天,再由乙工程隊(duì)單獨(dú)工作30天的方案施工,這樣就完成了此路段的

1)求甲、乙工程隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?

2)已知甲工程隊(duì)每天的施工費(fèi)用是2萬(wàn)元,乙工程隊(duì)每天的施工費(fèi)用為1.2萬(wàn)元,要使該項(xiàng)目的工程費(fèi)不超過(guò)114萬(wàn)元,則需要改變施工方案,但甲乙兩個(gè)工程隊(duì)不能同時(shí)施工,乙工程隊(duì)最少施工多少天才能完成此項(xiàng)工程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】作圖題:

1)如圖①,已知:.求作:射線,使平分(要求:尺規(guī)作圖,不寫(xiě)作法,但需保留作圖痕跡)

2)題(1)中作圖的依據(jù)是全等三角形判定方法中的__________

3)在圖②中作出,使它與關(guān)于軸對(duì)稱(chēng).

4)在圖②中的軸上找到一點(diǎn),使的周長(zhǎng)最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有兩條公路OM,ON相交成30°,沿公路OM方向離兩條公路的交叉處O點(diǎn)80米的A處有一所希望小學(xué),當(dāng)拖拉機(jī)沿ON方向行駛時(shí),路兩旁50米內(nèi)會(huì)受到噪音影響,已知有兩臺(tái)相距30米的拖拉機(jī)正沿ON方向行駛,它們的速度均為5/秒,問(wèn)這兩臺(tái)拖拉機(jī)沿ON方向行駛時(shí)給小學(xué)帶來(lái)噪音影響的時(shí)間是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果批發(fā)商場(chǎng)銷(xiāo)售一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),在進(jìn)貨價(jià)不變的情況下.若每千克漲價(jià)1元,日銷(xiāo)售量將減少20千克.

(1)現(xiàn)該商場(chǎng)要保證每天盈利6000元,同時(shí)又要使顧客得到實(shí)惠,那么每千克應(yīng)漲價(jià)多少元?

(2)每千克水果漲價(jià)多少元時(shí),商場(chǎng)每天獲得的利潤(rùn)最大?獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,正方形ABCD中,AD=4,點(diǎn)ECD上,DE=3CE,F(xiàn)AD上異于D的點(diǎn),且∠EFB=FBC,則tanDFE=( )

A. 2 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點(diǎn)P,根據(jù)下列條件,求∠BPC的度數(shù).

(1)若∠ABC=50°,∠ACB=60°,則∠BPC   

(2)若∠ABC+∠ACB=120°,則∠BPC   ;

(3)若∠A=80°,則∠BPC   ;

(4)從以上的計(jì)算中,你能發(fā)現(xiàn)已知∠A,求∠BPC的公式是:∠BPC   (提示:用∠A表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知正方形ABCO,A0,3),點(diǎn)Dx軸上一動(dòng)點(diǎn),以AD為邊在AD的右側(cè)作等腰RtADE,∠ADE90°,連接OE,則OE的最小值為(

A. B. C. 2D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:中,

如圖1,若,,且,求AD的長(zhǎng);

如圖2,請(qǐng)利用沒(méi)有刻度的直尺和圓規(guī),在線段AB上找一點(diǎn)F,使得點(diǎn)F到邊AC的距離等于注:不寫(xiě)作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)用字母進(jìn)行標(biāo)注

查看答案和解析>>

同步練習(xí)冊(cè)答案