分析 閱讀發(fā)現(xiàn):只要證明∠DFC=∠DCF=∠ADE=∠AED=15°,即可證明.
拓展應(yīng)用:(1)欲證明ED=FC,只要證明△ADE≌△DFC即可.
(2)根據(jù)∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC即可計(jì)算.
解答 解:如圖①中,∵四邊形ABCD是正方形,
∴AD=AB=CD,∠ADC=90°,
∵△ADE≌△DFC,
∴DF=CD=AE=AD,
∵∠FDC=60°+90°=150°,
∴∠DFC=∠DCF=∠ADE=∠AED=15°,
∴∠FDE=60°+15°=75°,
∴∠MFD+∠FDM=90°,
∴∠FMD=90°,
故答案為90°
(1)∵△ABE為等邊三角形,
∴∠EAB=60°,EA=AB.
∵△ADF為等邊三角形,
∴∠FDA=60°,AD=FD.
∵四邊形ABCD為矩形,
∴∠BAD=∠ADC=90°,DC=AB.
∴EA=DC.
∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,
∴∠EAD=∠CDF.
在△EAD和△CDF中,
{AE=CD∠EAD=∠FDCAD=DF,
∴△EAD≌△CDF.
∴ED=FC;
(2)∵△EAD≌△CDF,
∴∠ADE=∠DFC=20°,
∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.
點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、正方形的性質(zhì)、矩形的性質(zhì)等知識(shí),解題的關(guān)鍵是正確尋找全等三角形,利用全等三角形的尋找解決問(wèn)題,屬于中考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 正數(shù)、負(fù)數(shù)統(tǒng)稱為有理數(shù) | B. | 無(wú)限小數(shù)都是無(wú)理數(shù) | ||
C. | 有理數(shù)、無(wú)理數(shù)統(tǒng)稱為實(shí)數(shù) | D. | 兩個(gè)無(wú)理數(shù)的和一定是無(wú)理數(shù) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ![]() | B. | ![]() | C. | ![]() | D. | ![]() |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com