精英家教網 > 初中數學 > 題目詳情

【題目】我市某蔬菜生產基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18的條件下生長最快的新品種.圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚內溫度y()隨時間x(小時)變化的函數圖象,其中BC段是雙曲線的一部分.請根據圖中信息解答下列問題:

(1)恒溫系統(tǒng)在這天保持大棚內溫度18的時間有多少小時?

(2)求k的值;

(3)當x=16時,大棚內的溫度約為多少度?

【答案】解:(1)恒溫系統(tǒng)在這天保持大棚溫度18的時間為12﹣2=10小時。

(2)點B(12,18)在雙曲線上,

,解得:k=216。

(3)由(2),

當x=16時,,

當x=16時,大棚內的溫度約為13.5。

解析(1)根據圖象直接得出大棚溫度18的時間為12﹣2=10(小時)。

(2)應用待定系數法求反比例函數解析式即可。

(3)將x=16代入函數解析式求出y的值即可。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知:△ABC≌△EDC
1)若DEBC(如圖1),判斷△ABC的形狀并說明理由.
2)連結BE,交ACF,點HCE上的點,且CH=CF,連結DHBEK(如圖2).求證:∠DKF=ACB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,中,,點內部一點,,點是邊上一點,若平分,,則______°

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明同學在學習與圓有關的角時了解到:在同圓或等圓中,同。ɑ虻然。┧鶎Φ膱A周角相等如圖,點A、B、C、D均為⊙O上的點,則有∠C=D.

小明還發(fā)現,若點E在⊙O外,且與點D在直線AB同側,則有∠D >E. 請你參考小明得出的結論,解答下列問題:

(1)如圖1,在平面直角坐標系xOy中,點A的坐標為(0,7),點B的坐標為(0,3),點C的坐標為(3,0) .①在圖1中作出ABC的外接圓(保留必要的作圖痕跡,不寫作法);

②若在軸的正半軸上有一點D,且∠ACB =ADB,則點D的坐標為________;

(2) 如圖2,在平面直角坐標系xOy中,點A的坐標為(0,m),點B的坐標為(0,n),其中m>n>0.P軸正半軸上的一個動點,當∠APB達到最大時,直接寫出此時點P的坐標

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了加強公民的節(jié)水意識,合理利用水資源,各地采用價格調控手段達到節(jié)約用水的目的,某市規(guī)定如下用水收費標準:每戶每月的用水量不超過6立方米時,水費按每立方米a元收費,超過6立方米時,不超過的部分每立方米仍按a元收費,超過的部分每立方米按c元收費,該市某戶今年9、10月份的用水量和所交水費如下表所示:

設某戶每月用水量x(立方米),應交水費y()

(1)a= ,c=

(2)x≤6,x≥6,分別求出yx的函數關系式

(3)若該戶11月份用水量為8立方米,求該戶11 月份水費是多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】7分)某興趣小組開展課外活動.如圖,A,B兩地相距12米,小明從點A出發(fā)沿AB方向勻速前進,2秒后到達點D,此時他(CD)在某一燈光下的影長為AD,繼續(xù)按原速行走2秒到達點F,此時他在同一燈光下的影子仍落在其身后,并測得這個影長為1.2米,然后他將速度提高到原來的1.5倍,再行走2秒到達點H,此時他(GH)在同一燈光下的影長為BH(點C,E,G在一條直線上).

(1)請在圖中畫出光源O點的位置,并畫出他位于點F時在這個燈光下的影長FM(不寫畫法);

2)求小明原來的速度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列定理中,逆命題是假命題的是(

A.等腰三角形的底角相等;

B.全等三角形的對應角相等;

C.直角三角形斜邊上的中線等于斜邊的一半;

D.線段垂直平分線上的任意一點到這條線段兩個端點的距離相等。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC,AB=AC,AC的垂直平分線與AB所在直線相交所得的銳角為40°,∠C=______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將以直角頂點為旋轉中心順時針旋轉,使點剛好落在上(即:點),若,則圖中

A. B. C. D.

查看答案和解析>>

同步練習冊答案