【題目】如圖,OB為∠AOC內(nèi)一條射線,∠AOB的余角是它自身的兩倍.
(1)求∠AOB的度數(shù);
(2)射線OE從OA開始,在∠AOB內(nèi)以1°/s的速度繞著O點(diǎn)逆時(shí)針方向旋轉(zhuǎn),轉(zhuǎn)到OB停止,同時(shí)射線OF在∠BOC內(nèi)從OB開始以3°/s的速度繞O點(diǎn)逆時(shí)針方向旋轉(zhuǎn)轉(zhuǎn)到OC停止,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①若OE,OF運(yùn)動(dòng)的任一時(shí)刻,均有∠COF=3∠BOE,求∠AOC的度數(shù);
②OP為∠AOC內(nèi)任一射線,在①的條件下,當(dāng)t=10時(shí),以OP為邊所有角的度數(shù)和的最小值為 .
【答案】(1)30°;(2)①120°,②170°.
【解析】
(1)根據(jù)余角的定義列方程解答即可;
(2)①分別用t的代數(shù)式表示出∠AOE、∠BOF,∠BOE,根據(jù)∠COF=3∠BOE列方程解答即可;
②當(dāng)OP與OB重合時(shí),以OP為邊所有角的度數(shù)和的有最小值,把t=10代入計(jì)算即可.
解:(1)設(shè)∠AOB=x,則∠AOB的余角=(90﹣x),
依題意有:∴90﹣x=2x,
∴x=30,
∴∠AOB=30°;
(2)①∵運(yùn)動(dòng)時(shí)間為t秒,則
∠AOE=t°,∠BOF=3t°,∠BOE=(30﹣t)°,
∠COF=∠AOC﹣∠AOB﹣∠BOF,
設(shè)∠AOC=y°,
又∵∠COF=3∠BOE,
則有:y﹣30﹣3t=3(30﹣t),
解得:y=120,
∴∠AOC=120°,
②當(dāng)OP與OB重合時(shí),以OP為邊所有角的度數(shù)和的有最小值,
當(dāng)t=10時(shí),以OP為邊所有角的度數(shù)和的最小值為170°.
故答案為:170°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)生參加植樹造林,甲班每天比乙班多植5棵樹,甲班植80棵樹與乙班植70棵樹所用的天數(shù)相等,求甲、乙兩班每天各植樹多少棵。下面列式錯(cuò)誤的是 ( )
A.設(shè)甲班每天植樹x棵,則B.設(shè)乙班每天植樹x棵,則
C.設(shè)甲班在x天植樹80棵,則D.設(shè)乙班在x天植樹70棵,則
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE,BE分別交于點(diǎn)G、H.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD=AE2;④S△ABC=2S△ADF.其中正確結(jié)論的序號(hào)是_____.(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,以每袋標(biāo)準(zhǔn)質(zhì)量45克為標(biāo)準(zhǔn),檢測(cè)每袋的質(zhì)量是否符合該標(biāo)準(zhǔn),超過或不足的克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:
與標(biāo)準(zhǔn)質(zhì)量的差值(單位:克) | ﹣5 | ﹣3 | 0 | 1 | 2 | 5 |
袋數(shù) | 1 | 3 | 6 | 4 | 5 | 1 |
回答下列問題:
(1)這20袋樣品中,完全符合每袋標(biāo)準(zhǔn)質(zhì)量45克的有 袋;
(2)這批樣品的總質(zhì)量是多少克?(要求寫出算式).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(﹣2,6),且與x軸相交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)為1.
(1)求一次函數(shù)y=kx+b的解析式;
(2)若點(diǎn)D在y軸負(fù)半軸上,且滿足S△COD═S△BOC,請(qǐng)直接寫出點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A.,B兩城決定向C,D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A,B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C,D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/噸和25元/噸;從B城往C, D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/噸和24元/噸,F(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).
(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行知識(shí)大賽,A校、B校各派出5名選手組成代表隊(duì)參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表:
平均數(shù)/分 | 中位數(shù)/分 | 眾數(shù)/分 | |
A校 | ______ | 85 | ______ |
B校 | 85 | ______ | 100 |
(2)結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個(gè)學(xué)校的決賽成績較好;
(3)計(jì)算兩校決賽成績的方差,并判斷哪個(gè)學(xué)校代表隊(duì)選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+2ax﹣4(a≠0)的圖象與x軸交于點(diǎn)A,B(A點(diǎn)在B點(diǎn)的左側(cè)),與y軸交于點(diǎn)C,△ABC的面積為12.
(1)求二次函數(shù)圖象的對(duì)稱軸與它的解析式;
(2)點(diǎn)D在y軸上,當(dāng)以A、O、D為頂點(diǎn)的三角形與△BOC相似時(shí),求點(diǎn)D的坐標(biāo);
(3)點(diǎn)D的坐標(biāo)為(﹣2,1),點(diǎn)P在二次函數(shù)圖象上,∠ADP為銳角,且tan∠ADP=2,求點(diǎn)P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸的原點(diǎn)為O,點(diǎn)A、B、C是數(shù)軸上的三點(diǎn),點(diǎn)B對(duì)應(yīng)的數(shù)為1,AB=8,BC=3,動(dòng)點(diǎn)P、Q同時(shí)從A、C出發(fā),分別以每秒2個(gè)長度單位和每秒1個(gè)長度單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)
(1)求點(diǎn)A、C分別對(duì)應(yīng)的數(shù);
(2)求點(diǎn)P、Q分別對(duì)應(yīng)的數(shù);(用含t的式子表示)
(3)試問當(dāng)t為何值時(shí),OP=OQ?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com