把兩個含有45°角的直角三角板如下圖放置,點D在BC上,連結BE,AD,AD的延長線交BE于點F。試判斷AF和BE的位置關系,并說明理由。

答:AF⊥BE,理由如下                   

∵△ECD和△BCA都是等腰Rt△

∴EC=DC,BC=AE

∠ECD=∠ACB=90°             

在△BEC和△ADC中

EC=DC,∠ECB=∠DCA,BC=AC

∴△BEC≌△ADC(SAS)              

∴∠EBC=∠DAC                 

∵∠DAC+∠CDA=90°

∠FDB=∠CDA

∴∠EBC+∠FDB=90°

∴∠BFD=90°,即AF⊥BE        

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

22、把兩個含有45°角的大小不同的直角三角板如圖放置,點D在BC上,連接BE,AD,AD的延長線交BE于點F.
說明:AF⊥BE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)把兩個含有45°角的直角三角板如圖1放置,點D在BC上,連接BE,AD,AD的延長線交BE于點F.求證:AF⊥BE.
(2)把兩個含有30°角的直角三角板如圖2放置,點精英家教網(wǎng)D在BC上,連接BE,AD,AD的延長線交BE于點F.問AF與BE是否垂直?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把兩個含有45°角的直角三角板如圖1放置,點D在BC上,連接BE、AD,AD的延長線交于BE于點F.
(1)問:AD與BE在數(shù)量上和位置上分別有何關系?說明理由.
(2)若將45°角換成30°如圖2,AD與BE在數(shù)量和位置上分別有何關系?說明理由.
(3)若將圖2中兩個三角板旋轉成圖3、圖4、圖5的位置,則(2)中結論是否仍然成立,選擇其中一種圖形進行說明.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

26、把兩個含有45°角的直角三角板如圖放置,點D在AC上,連接AE、BD,試判斷AE與BD的關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把兩個含有45°角的直角三角板如圖放置,D在BC點上,連接BD、AD,AD的延長線交BE于點F,求證:AF⊥BE.

查看答案和解析>>

同步練習冊答案