精英家教網 > 初中數學 > 題目詳情
如圖所示,在平面直角坐標系中,⊙M經過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數表達式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在⊙M上,開口向下,且經過點B,求此拋物線的函數表達式;
(3)設(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.

【答案】分析:(1)根據“兩點法”可求直線AB解析式;
(2)求直徑AB,得半徑MC的值,由中位線定理得MN=OB,CN=MC-MN,又CM垂直平分線段AO,可得C點橫坐標及縱坐標,設拋物線頂點式,把B點坐標代入即可求拋物線解析式;
(3)由(2)可求線段DE的長,△ABC的面積可求,這樣可求△PDE中DE邊上的高,可表示P點的縱坐標,代入拋物線解析式求P點橫坐標即可.
解答:解:(1)設直線AB的函數表達式為y=kx+b(k≠0),
∵直線AB經過A(-6,0),B(0,-8),
∴由此可得
解得
∴直線AB的函數表達式為y=-x-8.

(2)在Rt△AOB中,由勾股定理,得
∵⊙M經過O,A,B三點,且∠AOB=90°,
∴AB為⊙M的直徑,
∴半徑MA=5,
設拋物線的對稱軸交x軸于點N,
∵MN⊥x,
∴由垂徑定理,得AN=ON=OA=3.
在Rt△AMN中,
∴CN=MC-MN=5-4=1,
∴頂點C的坐標為(-3,1),
設拋物線的表達式為y=a(x+3)2+1,
∵它經過B(0,-8),
∴把x=0,y=-8代入上式,
得-8=a(0+3)2+1,解得a=-1,
∴拋物線的表達式為y=-(x+3)2+1=-x2-6x-8.

(3)如圖,連接AC,BC,
S△ABC=S△AMC+S△BMC=•MC•AN+MC•ON=×5×3+×5×3=15.
在拋物線y=-x2-6x-8中,設y=0,則-x2-6x-8=0,
解得x1=-2,x2=-4.
∴D,E的坐標分別是(-4,0),(-2,0),∴DE=2;
設在拋物線上存在點P(x,y),使得S△PDE=S△ABC=×15=1,
則S△PDE=•DE•|y|=×2×|y|=1,∴y=±1,
當y=1時,-x2-6x-8=1,解得x1=x2=-3,∴P1(-3,1);
當y=-1時,-x2-6x-8=-1,解得x1=-3+,x2=-3-,
∴P2(-3+,-1),P3(-3-,-1).
綜上所述,這樣的P點存在,
且有三個,P1(-3,1),P2(-3+,-1),P3(-3-,-1).
點評:本題主要考查方程、函數、三角形、圓等基礎知識,考查綜合運用數學知識、分析問題、解決問題的能力,考查待定系數法、數形結合、方程與函數的思想方法.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖所示,在平面直角坐標系中,一次函數y=kx+1的圖象與反比例函數y=
9x
的圖象在第一象限相精英家教網交于點A,過點A分別作x軸、y軸的垂線,垂足為點B、C.如果四邊形OBAC是正方形,求一次函數的關系式.

查看答案和解析>>

科目:初中數學 來源: 題型:

5、如圖所示,在平面直角坐標系中,點A、B的坐標分別為(-2,0)和(2,0).月牙①繞點B順時針旋轉90°得到月牙②,則點A的對應點A′的坐標為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,在平面直角坐標系中,一顆棋子從點P處開始依次關于點A,B,C作循環(huán)對稱跳動,即第一次從點P跳到關于點A的對稱點M處,第二次從點M跳到關于點B的對稱點N處,第三次從點N跳到關于點C的對稱點處,…如此下去.
(1)在圖中標出點M,N的位置,并分別寫出點M,N的坐標:
 

(2)請你依次連接M、N和第三次跳后的點,組成一個封閉的圖形,并計算這個圖形的面積;
(3)猜想一下,經過第2009次跳動之后,棋子將落到什么位置.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖所示,在平面直角坐標系xoy中,有一組對角線長分別為1,2,3的正方形A1B1C1O、A2B2C2B1、A3B3C3B2,其對角線OB1、B1B2、B2 B3依次放置在y軸上(相鄰頂點重合),依上述排列方式,對角線長為n的第n個正方形的頂點An的坐標為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖所示,在平面直角坐標系中,拋物線y=ax2+bx+3(a≠0)經過A(-1,0)、B(3,0)兩點,拋物線與y軸交點為C,其頂點為D,連接BD,點P是線段BD上一個動點(不與B、D重合),過點P作y軸的垂線,垂足為E,連接精英家教網BE.
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)如果P點的坐標為(x,y),△PBE的面積為s,求s與x的函數關系式,寫出自變量x的取值范圍,并求出s的最大值;
(3)在(2)的條件下,當s取得最大值時,過點P作x的垂線,垂足為F,連接EF,把△PEF沿直線EF折疊,點P的對應點為P',請直接寫出P'點坐標,并判斷點P'是否在該拋物線上.

查看答案和解析>>

同步練習冊答案