如圖甲,已知⊿ABC和⊿DEF中,∠B=∠DEF,AB=DE,BE=CF.

 ①請(qǐng)說明∠A=∠D的理由;

 ②⊿ABC可以經(jīng)過圖形的變換得到⊿DEF,請(qǐng)你描述由⊿ABC到⊿DEF的變換過程.

③若圖形經(jīng)過變換后變成圖乙,且∠E=370,  ∠EDB=250,

∠C=580 ,求∠NMF的度數(shù).

 

 

【答案】

(1)見解析(2)平移變換(3)97

【解析】(1)  ∵BE=CF   ∴BE+CE=CF+CE 即BC=EF  (1分)

    在⊿ABC和⊿DEF中

     AB=DE    ∠B=∠DEF   BC=EF

   ∴ ⊿ABC≌⊿DEF  (SAS)          (3分)

  ∴  ∠A=∠D                     (4分)

(2)平移變換:⊿ABC沿BC方向平移BE得到⊿DEF           (6分) 

(3)∠NMF=1800-250-580=970         (8分)

【解析】(1)(2)尋找證明△ABC≌△DEF的條件,得出∠A=∠D,并體會(huì)圖形之間的平移關(guān)系;

(3)已知旋轉(zhuǎn),求角,可利用圖形旋轉(zhuǎn),對(duì)應(yīng)角相等的性質(zhì)解題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

25、如圖甲,已知△ABC和△DEF中,∠B=∠DEF,AB=DE,BE=CF.
①請(qǐng)說明∠A=∠D的理由;
②圖甲中△ABC可以經(jīng)過圖形的變換得到△DEF,請(qǐng)你描述△ABC的變換過程;
③若圖形經(jīng)過變換后變成圖乙,且∠E=38°,∠EDB=25°,∠C=57°,求∠NMF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:
(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為SN
①若△DEF的面積為10000,當(dāng)n為何值時(shí),2<Sn<3?(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫出三次的嘗試估算過程)
②當(dāng)n>1時(shí),請(qǐng)寫出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式.(不必證明)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•慶元縣模擬)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時(shí),3<Sn<4?
(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫出二次的嘗試估算過程)
②當(dāng)n>1時(shí),請(qǐng)寫出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省麗水市慶元縣中考模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫出分割線,并說明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連結(jié)三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結(jié)各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連結(jié)它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時(shí),3<Sn<4?
(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫出二次的嘗試估算過程)
②當(dāng)n>1時(shí),請(qǐng)寫出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省麗水市慶元縣中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.

探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫出分割線,并說明理由.

(2)一般地,“任意三角形都是自相似圖形”,只要順次連結(jié)三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結(jié)各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連結(jié)它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為Sn

①若△DEF的面積為1000,當(dāng)n為何值時(shí),3<Sn<4?

(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫出二次的嘗試估算過程)

②當(dāng)n>1時(shí),請(qǐng)寫出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案