【題目】ABC中,∠A90°,DBC的中點(diǎn),E、F分別在ABAC上,且DEDF,BE2,CF4,則EF的長為_____

【答案】2

【解析】

延長FD至點(diǎn)G,使得DGDF,連接BG,EG,易證CDF≌△BDG,可得BGCF4,∠C=∠DBG,可證明∠ABG90°,再根據(jù)等腰三角形底邊三線合一性質(zhì)可得EFEG,即可求得EF的長,即可解題.

延長FD至點(diǎn)G,使得DGDF,連接BG,EG

∵在CDFBDG中,

,

∴△CDF≌△BDGSAS),

BGCF4,∠C=∠DBG

∵∠C+ABC90°,

∴∠DBG+ABC90°,即∠ABG90°,

DEFG,DFDG,

EFEG

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)P從點(diǎn)B出發(fā),以速度沿向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.

1_______.(用含t的代數(shù)式表示)

2)當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以的速度沿向點(diǎn)A運(yùn)動(dòng),當(dāng)時(shí),求v的值.

3)在(2)的條件下,求時(shí)v的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三個(gè)邊長分別為1,2,3的正三角形從左到右如圖排列,則圖中陰影部分面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,B90°AB4,BC2AC為邊作△ACE,ACE90°AC=CE,延長BC至點(diǎn)D使CD5,連接DE.求證ABC∽△CED

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程kx2+(3k+1)x+3=0.

(1)求證:無論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;

(2)若二次函數(shù)y=kx2+(3k+1)x+3的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù),求k值;

(3)在(2)的條件下,設(shè)拋物線的頂點(diǎn)為M,直線y=-2x+9與y軸交于點(diǎn)C,與直線OM交于點(diǎn)D.現(xiàn)將拋物線平移,保持頂點(diǎn)在直線OD上.若平移的拋物線與射線CD(含端點(diǎn)C)只有一個(gè)公共點(diǎn),求它的頂點(diǎn)橫坐標(biāo)的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:

1)畫線段ADBC且使AD=BC,連接CD

2)線段AC的長為   ,CD的長為   ,AD的長為_____;

3ACD   三角形,四邊形ABCD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,A0,a)、B(﹣b,0),若b+4C點(diǎn)是B點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn).

1)判斷△ABC的形狀并證明;

2P點(diǎn)在第一象限,且∠APC135°,試探究關(guān)于PA、PB、PC三條線段的確定數(shù)量關(guān)系;

3E點(diǎn)在BC上,F為線段AE的中點(diǎn),EFE點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到EG,E點(diǎn)從B點(diǎn)沿BC運(yùn)動(dòng)到C點(diǎn),求G點(diǎn)隨E點(diǎn)運(yùn)動(dòng)的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品每件成本28元,在試銷階段產(chǎn)品的日銷售量y(件)與每件產(chǎn)品的日銷售價(jià)x(元)之間的關(guān)系如圖中的折線所示.為維持市場(chǎng)物價(jià)平衡,最高售價(jià)不得高出83元.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)要使每日的銷售利潤w最大,每件產(chǎn)品的日銷售價(jià)應(yīng)定為多少元?此時(shí)每日銷售利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+3的圖象過點(diǎn)A(-1,0),對(duì)稱軸為過點(diǎn)(1,0)且與y軸平行的直線.

(1)求點(diǎn)B的坐標(biāo)

(2)求該二次函數(shù)的關(guān)系式;

(3)結(jié)合圖象,解答下列問題:

當(dāng)x取什么值時(shí),該函數(shù)的圖象在x軸上方?

當(dāng)-1<x<2時(shí),求函數(shù)y的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案