【題目】如圖,將一矩形OABC放在直角坐標系中,O為坐標原點,點A在y軸正半軸上,點E是邊AB上的一個動點不與點A、B重合,過點E的反比例函數(shù)的圖象與邊BC交于點F
若的面積為,且,求k的值;
若,,反比例函數(shù)的圖象與邊AB、邊BC交于點E和F,當沿EF折疊,點B恰好落在OC上,求k的值.
【答案】(1)2;(2)3.
【解析】
(1)設,則可得,,根據(jù),可得,可得;
(2)過E作,垂足為D,沿EF折疊,點B恰好落在OC上的,根據(jù)點E、F在反比例函數(shù)的圖象上,,,可得,,根據(jù)線段之間的等量關系可得:,,
根據(jù),易證∽,可得,
根據(jù)可得出,在中,利用勾股定理可得出k的值.
解:設,則,,
點E在反比例函數(shù)上,
,
的面積為1,
,;
答:k的值為:2.
過E作,垂足為D,沿EF折疊,點B恰好落在OC上的,
,,點E、F在反比例函數(shù)的圖象上,
,,
,,
,
,
,
,
,
∽,
可得:,
,
,
在中,由勾股定理得:
,解得:,
答:k的值為:3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.
(1)求這個二次函數(shù)的解析式;
(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使△AOB的面積等于6,求點B的坐標;
(3)對于(2)中的點B,在此拋物線上是否存在點P,使∠POB=90°?若存在,求出點P的坐標,并求出△POB的面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,B在x軸上,四邊形OACB為平行四邊形,且
∠AOB=60°,反比例函數(shù) (k>0)在第一象限內過點A,且與BC交于點F。當F為BC的中點,且S△AOF=12 時,OA的長為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛根據(jù)以往的學習經驗,想通過由“特殊到一般”的方法探究下面二次根式的運算規(guī)律.
以下是小剛的探究過程,請補充完整.
(1)具體運算,發(fā)現(xiàn)規(guī)律:
特例1:;特例2:;特例3:;
特例4:______(舉一個符合上述運算特征的例子);
(2)觀察、歸納,得出猜想:
如果為正整數(shù),用含的式子表示這個運算規(guī)律:______;
(3)請你證明猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小剛根據(jù)以往的學習經驗,想通過由“特殊到一般”的方法探究下面二次根式的運算規(guī)律.
以下是小剛的探究過程,請補充完整.
(1)具體運算,發(fā)現(xiàn)規(guī)律:
特例1:;特例2:;特例3:;
特例4:______(舉一個符合上述運算特征的例子);
(2)觀察、歸納,得出猜想:
如果為正整數(shù),用含的式子表示這個運算規(guī)律:______;
(3)請你證明猜想的正確性.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“雙十一購物狂歡節(jié)”來臨之際,某超市擬舉辦購物促銷活動,從分店調動了20名店員參與總店活動,其中男店員8人,女店員12人.
(1)若從這20人中隨機選取一人作為宣傳人員,求選到女店員的概率;
(2)分店的某活動中需要甲、乙兩店員中選一人參與,他們準備以游戲的方式決定由誰參加,游戲規(guī)則如下:將四張牌面數(shù)字分別為2,3,4,5的撲克牌洗勻后,數(shù)字朝下放于桌面,從中任取2張,若牌面數(shù)字之和為偶數(shù),則甲參加,否則乙參加,請用樹狀圖或列表法分別求出甲、乙兩人參加這項活動的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE. 將△EDC繞點C按順時針方向旋轉,記旋轉角為α.
(1)問題發(fā)現(xiàn)
① 當時,;② 當時,
(2)拓展探究
試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情況給出證明.
(3)問題解決
當△EDC旋轉至A、D、E三點共線時,直接寫出線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是鈍角三角形,,圓O是△ABC的外接圓,直徑PQ恰好經過AB的中點M,PQ與BC的交點為D,,l為過點C圓的切線,作,CF也為圓的直徑.
(1)證明:;
(2)已知圓O的半徑為3,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:在數(shù)學課上,老師提出如下問題:
尺規(guī)作圖,過圓外一點作圓的切線.
已知:⊙O和點P
求過點P的⊙O的切線
小涵的主要作法如下:
如圖,(1)連結OP,作線段OP的中點A;
(2)以A為圓心,OA長為半徑作圓,交⊙O于點B,C;
(3)作直線PB和PC.
所以PB和PC就是所求的切線.
老師說:“小涵的做法正確的.”
請回答:小涵的作圖依據(jù)是_____.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com